关于耳朵对声音识别原理_场所设备_音频应用论坛 - Powered by AUIOAPP

音频应用论坛

 找回密码
 快速注册

QQ登录

只需一步,快速开始

搜索
热搜: 音频应用

[相机手机对讲机] 关于耳朵对声音识别原理

[复制链接]
hangqi6666 发表于 2006-11-16 19:21:00

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?快速注册

x
关于耳朵对声音识别原理
( a/ e6 I& c7 z$ @; n, x0 S" B6 T7 F" Z  m. }4 n
人们常说的听声辨位就是人们在听到声音以后,能辨别出声音是从哪个方向传播过来的,而声音在不同环境下传播的又不一样,这就是人耳对声音方向感的作用。
$ f. ?+ ]4 Y7 @$ i  j  声源方位感,是听觉器官对声音的音高、音强、音色、音长感觉之外的又一个感觉要素,它涉及到复杂的生理学心理学方面的问题。同时,声源方位感也是立体声技术的理论依据。
' n: N7 r& s" f: q* X% h$ G  一、时间差、相位差与声级差、音色差2 W# F  a& B8 |, Z1 l/ ~- K! Y
  双耳效应借以定位的原理是时间差、相位差、声级差、声色差。+ s  q' X- P% t4 X
  (一)时间差和相位差
! }+ W% q$ R/ T. E( O* D  时间差主要是指声音刚到双耳瞬间的先后差异。声波在常温下传播的速度为344m/s,当声源偏离听音人正前方中轴线时,耳A与耳B同声源之间的距离有差别,从而出现声音到达耳A与耳B之间的时间差。
8 I" Z' Q. l4 [" l) H5 ~# j! _/ S  时间差作为声源定位机理,对正面和两侧的声源定位准确性较高,对来自后面的声源定位则误差较大。其原因尚不十分清楚。可能因为声音来自背侧,会因为左耳或右耳产生耳壳遮蔽效应,使得声音因衍射而时差有变化。% r( m  O2 X! O  B2 V
  因为人耳对声音有适应性,当声音到达基底膜的刹那间,毛细胞表现兴奋而灵敏。当声音持续刺激,毛细胞的反应相对地迟钝。因此突发声和瞬态声的声源定位准确性较高。
  o2 M7 J3 A' P4 G4 K/ g  一个迅速流动的声源,会吸引听觉的注意。因此,方位不断变化的声音,人耳对其方位辨认的误差较小。这就是近代立体声节目出现声移位的原因。
5 ?+ |  o9 o2 V+ P  一个连续的声音,虽然到达双耳也存在时间差,但是因为达到同一只耳朵的后续声掩盖了前面的声音,使时间差变得不明显。( q3 o7 G! r5 ?) o
  高频声与低频声传播速度是一致的,所以时间差同声源的频率无关。但相位差同声源的频率有关。当一个声音到达双耳,在两耳之间出现时间差的同时,亦必然出现相位差。在一定的频率范围内,相位差是声源方位感的信息之一。( q& F0 F  M4 Q- k% E# m
  相位差定位机理在频率较低时效果较明显。例如,在常温中20Hz声音的波长是17m,200Hz为1.7m,时间差所形成的相位差人耳能够感觉出。而在声源处于高频区时,例如10kHz的波长85px,20kHz是42.5px,时间差所造成的相位差甚至超过360°,等于开始另一个波长。这时的相位差作为定位信息已无任何作用,因为已无法分辨出相位属于滞后或超前。因而高频声属于“混乱的相位差”信息。8 u2 \0 u4 }: `* e8 M7 c
  (二)声级差和音色差- G' {4 D% p$ ~1 f" ~/ t  F
  声级差指声波到达两耳出现不同的声强。形成声级差的主要原因是遮蔽效应。前进中的声波如遇到几何尺寸等于或大于声波长的障碍物,会发生遮蔽效应。其原理是:高频声在传播遇到障碍物时,因无法越过障碍物,在障碍物后面形成声阴影区;低频声波长大于障碍物而在障碍物后面形成声衍射区。对声级差起重要作用的是高频声,因为高频声波不能绕过听者头部,所以处于声阴影区的那只耳朵比能够听到直达声的那只耳朵,声强级产生差异。频率愈高,声源偏离正面中轴线愈大,声级差就愈明里。
5 x0 f1 ]2 ?. P7 m  Y7 A/ q  从衍射效应的角度看,低频声当然也会形成声级差。但是由于头部直径为500px左右,低频声发生衍射时,多走的路程有限,因衍射而损失的能量很小,因而偏离中轴线的低频声,到达两耳的声级差几近于零,对声源定位作用不明显。/ c& r0 j- f+ w# Z+ o( v/ y
  遮蔽效应对音级差产生作用的同时,亦必然对音色差发生作用。我们知道,构成音色的主要成分是基础音及其上方各次谐波的分量。举例说,一个基频为200Hz,入射角为45°的复合波点声源,那么,它的基础音和低次谐波遇到头部障碍后产生衍射效应,其高次谐波则被头部遮蔽而出现高频声阴影区。这时,到达一侧耳朵的声音为直达声(原音色),到达另一侧耳朵的声音因为高频损失而使音色发生变化。大脑皮质根据两耳的音色差来辨认声源方位。由此可见,音色差是高频信号声级差的另一种反映。; Z. p( A% }8 _. x" B5 I) ]
  应该指出,音色差的形成主要是那些基频在60Hz以上的复合音声源。因为60Hz以下的声音高次谐波波长较大,遇到头部尺寸(直径约500px)的障碍并不产生遮蔽效应。例如基频为30Hz的声音,其16次谐波为480Hz,波长为0.716m,波长比头部直径大许多,双耳之间不会形成明显的音色差,其17、18、19次谐波,强度很弱,对音色构成意义不大。因此,60Hz以下的声音比中频、高频声的声源方位感准确率要低。
4 `' Y; H/ T( X5 V9 ]  从强度差和音色差对双耳效应作用中,可以推想,纯音比复合音难以定位,原因在于纯音是正弦波(单个波),不能构造音色差。4 U) F% k$ C3 T& {$ \; Y
  (三)声源深度感
$ C: A4 R) z8 r# D/ B! G/ R) U  声源深度感是听音人与声源之间的距离,所以声源深度感又称声源距离定位。
7 O) Z; N% J& N1 [" [; v  v0 `  声源深度感常常同某个数字模式相联系。当我们听到一个声音时,我们除了感觉到这个声音发生的大致方位外,还会感觉到这个声音发生的大致距离。若要精确地感觉到声源的深度,则要熟悉声场环境,熟悉声源音色,或者直接借助视觉去测量声源与自己的距离。由此说明,声源深度感是后天形成的,可训练的。
; X$ g) S) }) k7 i1 o: n9 X$ G  深度定位主要通过声波衰减的程度来判定。声波在辐射过程中,能量随传播的距离而损耗,首先是高次谐波中振幅较小的先衰减,形成音色变化。人耳听到声信号后,同大脑储存的声信号作比较,从而判断这个声信号声源的深度。
( y3 r  M8 w5 X! e# `3 d  深度感的另一途径是声源比较法。当有数个不同距离的声源(阵声源)存在时,人耳可通过靠近的点声源来推测出其它声源的深度。多个不同距离和入射角的点声源所形成的阵声源,使听觉产生声音的宽度感和包围感。再重复一句话:声源深度感通常同视觉并联,靠视觉形成经验,靠视觉帮助精确定位。) K) \' F6 Z4 \2 r: N1 z" S0 \; G8 i
  (四)时间差和声级差的组合
/ j* D" R6 G7 P# \8 T4 @/ M  双耳效应所产生的各种差别,对声源方位感都可以单独发生作用。在它们相互结合时,则产生综合作用。如果它们的作用相反(正常情况下极少发生),那未就相互抵消。近代立体声技术的实践证明,时间差和声级差的组合,对声源方位感效果十分明显。实验证明,在一定条件下,1ms时间差相当于5?12dB的声级差,其关系可互换。2 K, N6 y  k7 _% w4 N
  在一个混响时间超过正常声学要求的大厅里,声源的反射声、混响声级大大超过其直达声。这时,人耳对声源的第一波阵面的刺激最为敏感,如果反射声和混响对于直达声延时40 60ms,人耳尚可能把握声源方位。如果延时超过这个范围,人耳无法分辨原发声到达双耳的时间差和声级差,就会产生分离的方向感,或混乱的方向感。这就是为什么一个回声很重的大厅里,人们常常不容易把握声源方位,需要用眼睛定位的缘故。
4 D9 N: f/ e2 J6 J  二、声源方位感机理
9 }: _  c$ {/ E) _9 O' ^  古典心理声学认为,人对声源感觉主要依靠双耳听音差别,称为双耳效应。如同双眼观察景物产生透视感、立体感一样,通过双耳对声音强弱差别的感觉,可以判断声音来向、产生立体声感。直到现代,双耳效应仍是声源方位感的主要理论根据。但近年来,专家发现单耳丧失听力的人,仍有声源方位判断能力,于是提出了耳壳效应这个新理论,使声源方位感理论更趋完善。0 W3 l7 B; X7 e4 s
  声源方位感的机理十分复杂。双耳效应的原理认为:由于双耳位置在头部两则,假如声源处于人的正前方的中轴线,则声音到达双耳的时间、声强级和相位是一样的;假如声源偏离听音人正前方的中轴线,则声音到达两耳的距离不等,因此,声音到达两耳会出现时间差和相位差。同时,因为一侧耳朵出现遮蔽效应因而两耳之间出现声级差、音色差。
6 R; l! x' H; e( _$ E  声源方位感是先天就具备的生理功能,然而声源方位的宽度、深度及一切与数字相关的感觉,则与一个人后天的经验有关。
/ q6 D! I& N* Q  三、耳壳效应
5 T3 l& |7 `" p) A0 |  早在一百多年前,就有人发现单耳失聪者,仍有辨认声源方位的能力,并提出过耳壳效应的设想,但不为人们所重视。直到本世纪六十年代,当立体声技术得到长足发展之后,人们认识到双耳效应对某些声源方位感觉难以解释,于是耳壳效应才得以被人重新认识。& q' Q4 r5 n, E1 h, v. [. v9 |
  当我们孩提时代,都可能做过一些有趣的试验,比如把耳朵往外拉成兜风耳,这时我们感觉到外界的声音突然变大变清楚了;如果把耳朵向后按到贴住头骨,又会发现声音减弱了。如前所述,耳壳有反射并聚集声音的功能。同时由于耳壳凹凸不平,因此,耳壳不同的部位所产生的反射声,比直达声稍迟进入耳鼓,形成比直达声极短延时量的重复声,重复声比直达声的延时量因入射角不同而异。4 w% M- m4 \+ P# X+ d# ^; N7 K* |
  耳壳效应对判断来自听音人背后的声音也有效。当一个声音来自背后时,耳壳将阻挡了这个声音的高频泛音,这样,同前方的声源相比,出现了明显的音色差;同时,由于耳壳的遮蔽作用,来自背后的声音将不产生重装音。大脑听觉区将这些信息同以往掌握的信号相比较,从而得出声源出自背后定。
* s$ _& L2 J8 X) Z. U* L2 A  四、单耳效应
( `" k& F% D: ?# z  单耳效应是指双耳效应原理范围内的单耳聆听定位功能。毫无疑义,一个双耳听力正常人主要以双耳聆听来辨认声源方位。然而一个有趣的事实告诉我们,人们不是平均使用双耳去聆听音响,而侧重地使用一边耳朵。6 R9 I; Y/ r+ `9 x6 K8 A6 t" y8 C' U
  例如,当一个点声源,出现在听音人左侧偏离中轴线35°的近处时,听音人听到声音并同时测出声源的大致方向;倘若听音人被该声源的音响所吸引,那么便会将头转向左方35°使自己的中轴线对准声源,以便用双耳(同时使用双眼)来辨认声源的准确位置;假如声源仍未准确测出而吸引力进一步加强时,听者会将头部向右转动用左耳向着声源方向,并向声源靠拢,直至找到声源准确位置为止。这个过程,亦即判断→校正→寻的三步曲,反映出听觉定位全身协调机制,同时说明单耳聆听在定位中的重要意义。+ B; t3 H: V; |1 O9 s* F
  五、骨导定位机理
) L2 \1 E+ h' l  i3 q  P3 i* c' a  双耳效应、单耳效应和耳壳效应的原理,给听觉定位提供了主要依据,似乎听觉器官的声源方位感机理已经得到全面的解答。然而细细一想,发现听觉定位机理中的一些细节,仍未得到完全合理的解释。例如来自听音人背后的声源,人耳是如何辨认出来的。按照双耳效应和耳壳效应原理,来自背后声音的辨认,主要是根据耳壳遮蔽效应,形成了背后声音与正面声音的音色差,而这种音色差的感觉出自大脑听觉对以往的经验对比。试验证明,三个月的婴儿就能够判断出来自背后的声音,同样地,一个成年人可以判断出一个来自背后而从未听到过的音响。由此可见,人耳背后声源的定位不能仅仅归结为音色差。
4 j1 T* v% _% h! o  专家们认为,必定还有一种听觉功能,来辅助人耳判断来自背后声源方位。这功能就是骨导定位机理。
1 s: F/ o) `6 l* y! h" |  关于骨导定位的可能性,历来颇有争议,争议的焦点不是颅骨能否传导声波,而是外界声波有多大比重由气导转化为骨传。有学者认为,声波在传播的过程中,从一种媒质进入另一种媒质时,在两种媒质的分界上会发生反射和入射,根据牛顿第二运动定律,可算出声波在颅骨的入射和反射的声强。经计算,反射波的声强级达99.89%dB,入射波仅为0.00003%dB,这表明外界声能量几乎全部被反射掉了,因此认定,骨导定位功能实际上不存在。
/ Q5 S! e2 M2 t  笔者认为,关键问题是存在不存在入射波,如果承认入射波的存在,那么能量比重即使极微量,在临界限度以上,人耳就能感觉得到。
! [4 k( f1 F4 c6 n% k+ T- e/ h  耳蜗基底膜上的毛细胞既然能够感觉到位移为1/10埃(1埃相当于氮原子的直径)的振动,那么,人耳可以感觉到由骨导传入的微量声信息。
  b' B# i# W9 e, {  我们知道,耳朵处于头颅两侧约114.99999999999999px的深处,此处与头颅外表各部位距离不等,头颅外表正对声源的部位进入耳蜗的声波之间形成骨导时间差,同时两耳之间亦存在骨导时间差。声波在颅骨的传播速度为3013m/s,气导速度为344m/s,头颅外表各部位与耳朵的距离约4.6~385px,为此,骨导直达声与气导直达声之间存在时间差,大脑听觉区根据骨导时间差及骨导与气导之间的时间差,迅速判断出声源方位。; @8 ]$ L; U7 ~3 m! c) l
  从理论上说,骨导的定位功能是全方位的,因此,骨导定位机理对来自正面、侧面、背面和头顶上面的声波都有作用。不过骨导定位功能又是辅助性的、次要的,是对双耳效应和单耳效应、耳壳效应的补充。
您需要登录后才可以回帖 登录 | 快速注册

本版积分规则

软硬产品代理咨询服务:声卡:雅马哈UR22C、罗兰声卡、福克斯特、艾肯、阿波罗 、M-audio 、普瑞声纳 、福克斯特、 达思冠系列 音箱:吸顶NS-IW560C、吸顶NS-IW660 、NS-AW350、低音NS-SW050、低音NS-SW100;JBL 吸顶8124、CSS-8006BM;香蕉猴 gibbon系列;普瑞声纳E5XT、E4.5、 E3.5BT 有线话筒:舒尔PGA27、PGA48、MV51、mv88、mv88+、SM27 ;森海E945 、MK4、E835S;舒伯乐top248s;罗德NT1-A、VIDEOMIC、VIDEOMIC GO、VideoMicro、VideoMic NTG 无线领夹麦克风:罗德 wireless go II 一拖一、一拖二;猛犸lark150 耳机:森海HD300 pro、美奇 CR-Buds 、索尼7506、爱科技K240S、K240 MKII、K271 MKII、K52、K72、K92、先锋、飞利浦 1:飞利浦会务通/会议摄像头/全向麦克风/执法仪/录音笔 2:洋铭便携式移动演播室 / 切换台 / 摄控一体摄像机 / 虚拟演播室 / 微金课教室 / 色键器 3:逻兰音视频切换台 / 声卡 / 电子鼓 /电钢琴 /耳机 4:Blackmagic专业摄影机 /调色台 / 切换台/ 广播级转换器 / 监视器 / 采集卡 5:索尼专业摄像机/佳能专业摄像机/松下专业摄像机/ insta360专业摄像机 6:话筒:铁三角/ 舒尔/ 森海塞尔 / AKG / RODE/ BBS 7:音响:YAMAHA/ 声艺 / 皇冠 /JBL / 真力/咪宝/BOSE /美奇 8:声卡:RME/羚羊/IXI /艾肯/PreSonus普瑞声纳/Focusrite福克斯特/YAMAHA/雅马哈/ickb 9:耳机:铁三角/beyerdynamic拜亚动力/AKG爱科技/索尼/RunningMan/美技 10:思锐三脚架 /防潮箱 /米泊三脚架/意美捷三脚架/曼富图三脚架 11:XSW系列,300.500代理商,EWD数字系列代理,6000.9000定制产品,还包销了全国三个型号:XSW1-825,EW100 G4-945,EWD- kk 205

小黑屋|手机版|Archiver|音频应用 (鄂ICP备13005321号-1)

Powered by Audio app

快速回复 返回顶部 返回列表