基于单片机的LED显示屏控制系统设计_会议广播_音频应用论坛 - Powered by AUIOAPP

音频应用论坛

 找回密码
 快速注册

QQ登录

只需一步,快速开始

搜索
热搜: 音频应用

基于单片机的LED显示屏控制系统设计

[复制链接]
山峰的水滴儿 发表于 2009-9-16 13:00:33

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?快速注册

x
  本设计使用双RAM技术来组织用于控制矩形显示屏的控制系统数据,提高了信息垂直循环显示时的存储器效率,大幅度降低了对数据存储器的占用率,并且对刷新频率的要求也不是很高。
* a6 Z6 t9 ]8 a( d" Y. Z7 P! O" K4 ]5 M
  1、LED显示数据组织; ?- m* `" Z0 L8 ~/ C* D! M8 Q5 V

# A1 S* M+ \4 V6 [* K, l% X% @  需要显示的区域小于或等于实际显示区域时,采用静态显示即可。但大多时候需要显示的区域大于或等于实际显示区域,如图1所示。为了简化问题的分析,本文将显示区域高度设置为LED显示屏高度的4倍,宽度等于LED显示屏宽度。设显示屏的高度为Lh,宽度为Lw,则显示区域高度Dh=4Lh,宽度Dw=Lw。本文以单色显示作为描述对象,且Bw=Bn=8(Bw为扫描线条数,Bn为输出数据宽度),如图1所示。* j! I: w# D4 e2 z, N% K( K7 Y3 ?
& n+ T( g4 d# ?* I0 Q4 u

3 T% S" k( F7 m+ K+ E; f" B显示区域图
0 k. a; R; E, c' i* `
* B; F- B  {) I2 L, {+ J! y  对于一个LED显示屏,宽度Lw和高度Lh确定后,显示屏单元板的排列方式也就确定了。单元板相邻的两条扫描线之间的距离为Sw,显示屏有Bw条扫描线,分别是Y0,Y1,…,YBw-1。每Sw行对应一位显示数据,显示屏上的每一个点对应于存储器中某个字节的某一位。Bw条扫描线分别指向:Y0=O,Y1=Sw,…,BBw-1=(Bw-1)Sw。用静态显示数据组织方法分别对显示块A、B、C、D组织显示数据。首先对显示块A的显示信息进行组织(X为列号):
1 C$ _$ [. }' K" L& I( I% n! J& c) X. p7 `
  ①X=0,即当前扫描线各行与第O列相交各点的显示数据按D0,D1,…,DBw-1的顺序存储在存储器的第一个存储单元中。
& d5 x- c0 \8 {' ^
& ~+ ~" K' |" w5 M+ ^  u5 K5 T  ②X值增加1,当前扫描线各行与X值对应列相交各点的显示数据存储在存储器的下一个存储单元中。直至将X=O至X=Dw-1的Dw个数据按顺序全部存储在存储器中。: w  O0 c% A: y6 V2 L
) H" ~1 E* a, W! e1 V
  ③Bw条扫描线向下移动一行,重复第①至②步,直到Y0移动到Sw-1行时。
0 `3 o2 t& d$ \. T9 C4 z% Q) ~6 J9 n' ?$ x& u( t+ k
  ④数据组织结束。) ?4 ?, v0 l5 |$ m0 l; e  m
( i# z  y9 i  ~% A; @# G
  显示区域B、C、D分别按照A的数据组织方式去组织显示数据。组织后的显示数据块按A、B、C、D的顺序存储在RAM0里,然后将RAM0中的显示数据块A、B、C、D按B、C、D、A的顺序拷贝到RAMl中,任何两个相邻显示块的显示数据在两块RAM中都有相同的地址存储区域。RAM0和RAMl的显示数据与存储器的对应关系如图2所示。
5 r+ r* O/ C3 l" F% ~( H% a# x3 }. _- V: x
  扫描组1从Y0=0到Y0=Sw-1,对应显示块A,数据已组织存放在存储器中,可以直接输出显示数据;扫描组2从Y0=Lh到Y0=Lh+ Sw-1,对应显示块B也已经组织好,可以直接输出。但是扫描组3,它的位置非同一般,它的扫描线分别对应着两个块A和B;第O,1,…Bw-1条扫描线分别对应显示块A扫描组1的1,2,…,Bw-2;而第Bw-1条扫描线就对应显示块B扫描组2的第O条扫描线。如果要在显示屏上显示扫描组3对应的这一屏数据,就一定要同时使用到扫描组1的第1,2,…,Bw-1条扫描线和扫描组2的第O条扫描线组织的显示数据作为输出数据。由于显示块A和B的显示数据是分别组织的,这时就要取RAM0的D0,D2,…,DBw-1和RAMl的D0位作为输出到显示屏的Bw位数据,这就需要在两块RAM同时输出的2Bw位中选择需要的Bw位,作为输出数据,并且这Bw位数据是连续的。/ S5 c% F  P4 \  c# Z8 z
) \* ]3 T% C& h. |4 ~, i4 f5 M

& {, p4 B" g! Q4 m8 M数据块与存储器之间的对应圈
( m! Y! Y4 t- A6 y; j
1 l0 Q2 ]9 Z+ j1 q/ O" L  显示步骤(在此只考虑垂直移动显示效果);双RAM技术将显示数据输出的时候,是将两块RAM中相同地址的两个数据同时输出。所以,如果设置RAMO为主存储器,RAMl为从存储器,则将两块RAM的显示数据存在一块串行存储器中时,偶地址单元应存储RAM0的数据,奇地址单元存储RAMl的数据,由于数据宽度为8,所以每次输出16位数据。如果显示区域中以(XL,YL)点为显示起始点,在LED屏上显示一屏显示信息,则其数据选择控制位只与YL、扫描线和扫描宽度Sw有关。
& Z% J5 s" X! o' _1 q% v3 O) x: J' r1 @: }! \1 R
  显示区域的起始行坐标为YL,一块显示区域有Bw·Sw行,则YL所在的块为:
. x- Z' B- T8 d3 }( A+ t0 u3 |% V' ~/ M. J

; ?5 r5 ?" s+ M1 I& q) S2 q
+ p$ @- E  u( P* S4 k" c+ {- W  这里讨论YL在实际显示区域的坐标没有多大意义,只须注意YL在当前显示块的相对坐标,NL=YL%(Bw·Sw)就是YL在当前显示块的相对纵坐标,则相对坐标为(NL,YL)。动态显示的基础是静态显示,静态显示以从特定行显示一屏为特征,当显示屏从第YL行开始显示信息时,因为一块显示区域有Sw·Dw个数据,则YL所在块显示数据的起始地址为:
) i; h2 B- @0 D2 ?6 }* V' y1 U: r/ B9 a$ j' W

! V$ ]% |  L. s+ v
. E/ Y$ |8 a$ j9 _; Q% z) n; X  一块显示区域分为Sw个区,则YL所在的分区记作:. m' H- N, ?  f0 s2 V% m6 E

( q4 y- M+ M. z" i+ \4 n- h  O5 j* u' V' P2 j& z
; ?4 v$ [; |' ^
  一区存放有Dw个显示数据,所以YL所在分区地址与所在块起始地址之间的相对偏移地址为(YL%Sw)·Dw。所以,只要知道了显示信息的起始行坐标,就能得到显示数据在存储器中的存储地址。
6 B9 B# o# {" C$ P! k
! Q) Y2 Y, H! s8 h# q  NL=YL/(Bw·Sw),这里记i=NL/Sw(0≤i≤7),表示显示信息跨越两个数据块时需要选择的数据位数。存储器输出16位数据[D0,D1,…,D15]后,从Di位控制选择连续的8位数据[Di,Di+1,…,D7,…,D7+i]输出到显示屏。当数据从一个字节的Di位开始输出16位时,如[Di,Di+1,…,D7,…,D15,D0,…,Di-1],前面8位在当前显示是多余的几位数据,后面8位数据[D8+i,…,D15,D0,…,Di-1]正好是要输出到显示屏的8位数据。当这16位数据串行输出到一个8位的移位寄存器中时,移位寄存器刚好可以容纳高8位数据,并将其输出显示。之后各列数据的输出情况同样如此,不需要额外的指令或电路来对输出数据进行选择输出。只是在每行第一列数据输出前,通过单片机模拟i个时钟脉冲输出到存储器,让输出数据产生错位,使数据从Di位开始输出。另外,当显示信息刚好是A、B、C、D块中的某一块时,无须产生模拟脉冲对数据进行选择,而是直接将数据输出显示。通过分析可知,SPI模块刚好具有这个功能,通过单片机额外模拟i个时钟脉冲,输出到串行存储器的时钟信号端,可以使数据错位,从指定的某一位Di开始输出。当显示信息跨越Sw-1区间时,如果一场显示还没有完毕,内存地址应返回到YL所在块的起始地址,并从起始地址开始输出显示数据,单片机模拟的脉冲数i也相应发生变化。# L6 x2 ~& e  w3 q
$ U" Q3 ?9 |0 _5 M
  2 、LED显示屏控制系统设计
2 D8 Z$ c5 F, ]* l3 x4 |+ ~( j- G3 k  E5 D9 a
  LED显示屏控制电路。为了提高数据输出效率,采用RAMtron公司的带SPI功能模块的VRS51L3074单片机。VRS51L3074的时钟频率为40 M-Hz,指令周期短,处理速度快,效率高;工作电压在3.3 V左右,但是可以兼容5 V。SST25VF016B是一款具有SPI接口的8引脚串行Flash。7 4LSl64为移位寄存器。
8 Z$ Q3 H+ i, ^6 b, T* P# _3 ^  R) \* v: ~
  2.1 VRS51L3074的SPI功能模块& c) p2 g; z6 ^% S

1 I- c1 ]  n: ~* T" H  VRS51L3074的SPI时钟频率可以在SysClk/2~SysClk/10
/ M6 m, S% R+ C% K, I& u' z9 P
$ A0 f0 p1 P' h  24范围内调整,SPI时钟频率最高可以达到20MHz。当VRS51L3074作为SPI主机时,可以对SPI运行控制、配置和状态监控以及其他的一些工作环境进行设置。, o0 d+ }) \3 D! c! ?" I
+ e$ _; x$ _4 _1 o: h: e
  配置寄存器SPICONFIG:主要对片选信号控制模式、SPI中断进行设置。5 U3 Z& f5 _; ?6 p+ x) [* g+ t

) o7 F* q4 Q  `9 @' c 
 楼主| 山峰的水滴儿 发表于 2009-9-16 15:08:57
 状态寄存器SPISTATUS:主要用于对SPI运行状态的监控。
5 r1 b& I, W1 P8 n7 ~! L" R
3 O$ k) \  @5 C  传输字长寄存器SPISIZE:设置传输字长,本文设置为16位,即每次输出16位数据。  I, o' i/ p+ i& C

" t! Y' I/ W" ]! y+ D5 `  控制寄存器SPICTRL:对SPI时钟速率、时钟相位/极性、片选信号,以及SPI时钟频率进行设置。
+ |5 F- m. p, [5 A' e
- q7 B2 O- D9 N' P  数据寄存器SPIRXTX0~SPIRXTX3:用于对SPI接口32位收发缓冲器的访问,对数据寄存器执行写操作是将数据送入发送缓冲器中,对数据寄存器执行读操作是从接收缓冲器中取出收到的数据。SPI接口的发送和接收缓冲器都采用双缓冲结构,从硬件上减少数据冲突并提高数据传输效率。在主模式下对SPIRXTX0寄存器执行写入操作将启动SPI传输。当传输字各行长大于8时,应最后向SPIRXTX0寄存器写入。6 ]0 J5 B- A: \- F7 R+ J

- T, F: _# ~6 H% H0 M; N9 r4 O  向串行Flash输入控制信号和数据地址后,启动串行Flash传输数据,在SPI时钟驱动下输出显示数据,并且可以用单片机模拟串行Flash时钟信号控制任意位数据输出。
  Y( h- r) U% X- h& @" e
- O, F) n" R4 m. ] 2.2 数据选择控制电路
/ E2 h6 _( x) ]% u5 ]# I! L' ?1 v5 q  V& l
  LED显示屏控制系统如图3所示,VRS51L3074单片机内部自带精确的40 MHz振荡器,不需要外部晶振电路提供系统时钟。数据显示采用内存为16 Mb的SST25VF016B。双RAM技术输出显示数据的时候,是将两块RAM中相同地址的两个数据同时输出,所以,将两块RAM的显示数据存放在一块串行存储器中时,偶地址单元应存储RAM0的数据,奇地址单元存储RAMl的数据,数据输出时每次输出16位数据。串行存储器和单片机的工作电压都在3.3 V左右,但是VRS51L3074可以兼容5V,简化了控制电路。控制信号和显示数据在输出到寄存器74LS164和显示屏的时候,需要用74LVC07进行电平转换。3 J5 ?% N/ v+ \$ n, w( i) K
1 ]6 J; I1 W$ w$ `
  ①将扫描线行地址通过P2端口的低4位送给LED显示屏。; y. A* F6 x+ x- q

' l$ b. p. _8 I1 o2 L  ②通过显示数据在显示区域中的位置,计算显示数据在存储器中的地址,并计算出数据选择的位数i。# k2 t$ y- Y- G& r
5 Y, s# y6 q9 ?  P
  ③通过单片机P3.0口模拟移位脉冲,输出到串行Flash时钟信号,移位脉冲数由数据选择位数i决定。使输出数据产生错位,正确地选择输出显示数据。
( G: d$ }/ k, ^9 }6 [, I7 G9 |6 H8 h: }
  ④启动SPI读取显示数据,SPI传输字长设置为16位。模拟脉冲已经输出到串行Flash使数据产生了错位,输出16位数据[Di,Di+1,…,D7,…,D15,D0,…,Di-1],输出到显示屏的数据[D8+i,…,D15,D0,…,Di-1]在高8位,经过移位刚好可以存放在移位寄存器中。每行第一个数据输出后,此行各列数据都直接输出。
2 Y. a3 A' s' C# j
+ n/ O4 M6 }& t0 C  ⑤16位数据输出完毕后,通过P3.1脚产生一个SCK脉冲,将移位寄存器74LSl64中的数据输出移入到单元板的串行移位寄存器74HC595中。1 |+ k9 T; ^' H& K$ X
# ]8 ]  e0 G9 o0 q! s* C4 s
  ⑥重复第④至⑤步,直到一行数据全部输出完毕后,由P3.2产生一个RCK脉冲,读取的一行数据将输出显示,然后扫描线下移一行。2 @4 C% D6 N* Q* I, g
9 J+ t; `5 w7 _. @
  ⑦重复第①至⑥步。
( b  {6 B# I' J, E1 R) u
6 C- Y5 t9 ?) Z- `  此电路有这样几个特点:显示数据从串行Flash输出后,不经单片机的处理,直接以DMA方式输出到移位寄存器74LSl64,同时实现串并转换,既节省数据处理时间,又提高显示效率。在每场数据输出之前,通过信息在显示区域中的地址计算数据选择位数i,并通过P3.O端
. {2 b- G6 A' @3 `8 Z  k$ y! m% \2 Q$ w& }' X
  口模拟i个脉冲输出到串行Flash,移出i位数据,数据产生错位,使输出显示的数据在16位输出数据的高8位,可以直接存放在移位寄存器中,输出到显示屏。以后同行各列的显示数据输出时,无需再进行数据选择位的判断,直接将显示数据从存储器中输出到显示屏。
' f5 y& j4 c1 a2 h$ m* i) Q9 E6 `: R# j# o
1 D+ h7 a$ U  i, s: b' d9 U6 N* J
存储器效率分析如表1所列& }$ q+ ~/ O! ^! P1 E5 q  U

* E4 w. ]  _. ?) D/ a  由表1可知,采用双RAM技术输出显示大大提高了存储器效率,降低了显示数据存储器的占用。当显示信息量较大时,动态数据组织使用的存储器比较多、利用率低,而采用双RAM技术正好解决了这个问题。一块RAM(静态显示时)的存储器效率是100%,双RAM的效率是50%。当有N块RAM时,效率为(N-1)/N。
黄舒翼 发表于 2009-10-12 22:02:43
我来试试...:)
113254301 发表于 2009-10-13 12:23:53
欣赏了,谢谢楼主发布,好文章,收藏了啊  
您需要登录后才可以回帖 登录 | 快速注册

本版积分规则

软硬产品代理咨询服务:声卡:雅马哈UR22C、罗兰声卡、福克斯特、艾肯、阿波罗 、M-audio 、普瑞声纳 、福克斯特、 达思冠系列 音箱:吸顶NS-IW560C、吸顶NS-IW660 、NS-AW350、低音NS-SW050、低音NS-SW100;JBL 吸顶8124、CSS-8006BM;香蕉猴 gibbon系列;普瑞声纳E5XT、E4.5、 E3.5BT 有线话筒:舒尔PGA27、PGA48、MV51、mv88、mv88+、SM27 ;森海E945 、MK4、E835S;舒伯乐top248s;罗德NT1-A、VIDEOMIC、VIDEOMIC GO、VideoMicro、VideoMic NTG 无线领夹麦克风:罗德 wireless go II 一拖一、一拖二;猛犸lark150 耳机:森海HD300 pro、美奇 CR-Buds 、索尼7506、爱科技K240S、K240 MKII、K271 MKII、K52、K72、K92、先锋、飞利浦 1:飞利浦会务通/会议摄像头/全向麦克风/执法仪/录音笔 2:洋铭便携式移动演播室 / 切换台 / 摄控一体摄像机 / 虚拟演播室 / 微金课教室 / 色键器 3:逻兰音视频切换台 / 声卡 / 电子鼓 /电钢琴 /耳机 4:Blackmagic专业摄影机 /调色台 / 切换台/ 广播级转换器 / 监视器 / 采集卡 5:索尼专业摄像机/佳能专业摄像机/松下专业摄像机/ insta360专业摄像机 6:话筒:铁三角/ 舒尔/ 森海塞尔 / AKG / RODE/ BBS 7:音响:YAMAHA/ 声艺 / 皇冠 /JBL / 真力/咪宝/BOSE /美奇 8:声卡:RME/羚羊/IXI /艾肯/PreSonus普瑞声纳/Focusrite福克斯特/YAMAHA/雅马哈/ickb 9:耳机:铁三角/beyerdynamic拜亚动力/AKG爱科技/索尼/RunningMan/美技 10:思锐三脚架 /防潮箱 /米泊三脚架/意美捷三脚架/曼富图三脚架 11:XSW系列,300.500代理商,EWD数字系列代理,6000.9000定制产品,还包销了全国三个型号:XSW1-825,EW100 G4-945,EWD- kk 205

小黑屋|手机版|Archiver|音频应用 (鄂ICP备13005321号-1)

Powered by Audio app

快速回复 返回顶部 返回列表