嘎啦嘎啦
发表于 2015-12-29 15:47:11
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有帐号?快速注册
x
前级放大器
7 r" |) }; Y: X
; k+ U' x G7 D" I" G按语:看到有帖子询及前级放大器的问题,一时手痒,将自己收集到的资料贴出,供大家参考:& y- ]! U& X, ~8 D: o
: K$ @& L$ d' b% L% q& k; O9 X% c4 e
在音响系统里,前级放大器所发挥的功能并不复杂,它只是负责切换讯源、处理讯号与控制音量,这就是音乐信息在进入后级前的最后一道处理程序。它的连接位置,介于讯源器材与后级放大器之间,故前级放大器所扮演的角色——负责将讯号整理与调整。
' O; n: E* _# l, y
1 T; E" G) G$ ?/ U( v: h# H设计上,前级放大器可以简单也可以复杂。: F0 K$ }8 h5 u* N* o9 ~, j
; b1 K% q4 H- X# F" I r* R! _
简单的前级只需要具备讯源输入、讯源选择、控制音量便行。换言之,简单的前级只要有一个讯源切换开关和音量电位器,加上一个机箱及输出入端子就成。
) i5 e3 b* l4 N n; ]8 c! Z" n5 v' H" I
复杂的前级集中很多的功能:设计师可以在讯源输入里,针对每一种输入加上一个缓冲电路,以隔绝前级与讯源之间的缓冲接口;讯号经过切换开关之后,则以最复杂、最严谨的处理方式,进入一个庞大的电路架构,包含缓冲、等化、调整等等步骤,最后再经过另一级缓冲电路,将阻抗降低之后,才连接到输出端子。当然,这种设计可以使用简单的IC,也可以使用大量晶体管架构电路,想用真空管的话,当然可以在机箱内塞入满满的真空管,外加上电池供电等等额外的设计,只要具备前级的功能,是没有什么限制的。4 I' y/ D, V2 ~. l6 T
& f6 n N6 v9 Z5 \2 S简单还是复杂?前级放大器的设计形式和用料,像厨师手里的材料一样,可以不同搭配、不同的作法、不同的烹饪方式、泡制出来不同的口味;电子设计师也像厨师一样,当然也可以使用任何电子材料,任意搭配设计与作法,设计制造出一部前级放大器,回放出来的声音的音色,各有各不同的多种结果。记得80-90年间,Burmester就有一部808,稍后Mark Levinson的Cello出了一部Pallet Suit额,成为复杂前级放大器的典范。
]% x# A1 h# q+ n: e! ~& ^- E3 _- D8 Y2 U5 _
Mark Levinson的Cello Suite
. Y- Q3 ~; _$ O# y, g, Z
; M8 t! D% P# W7 U简单的被动式前级、夸张复杂的全功能型前级我在这里不谈(事实上我在十多年前翻译过一篇Counterpoint的唱放前前级,共享了17枝真空管,夸张复杂之极),我们将焦点集中在标准的前级应该具备哪些基本架构。7 h9 \- |. H7 f2 z4 ]& ^3 Q+ p
' U- M) D5 r: {前级放大器又称「前置放大器」,通常设定的放大倍率为10倍,故也又称「10倍放大器」,人们简称为「前级」。* l+ ~- T6 c! R4 d
/ ^- Z1 M1 E4 ]1 C: m
是任何器材皆必备的,前级仅使用讯号线输出入,目前市面上的前级采用的输入端子,除了Mark Levinson早期的机型使用Lemo头之外,其的多数是单端的RCA端子,或是平衡的XLR端子。这种三孔插头与数码转换器使用的「AES/EBU」平衡头完全相同,请留意名称上的差异。XLR、平衡头、Canon头指的是插头本身,而「AES/EBU」指的是数字传输的格式;看到前级上XLR头,就说是「我的前级具有AES/EBU插头」,会闹笑话的。一些欧洲器材偶然会使用特制的输出输入端子,Linn、Naim都曾经使用过多孔DIN插头,它们与平衡头一样,具有负端先接地的功能,因此在未关机的情形下,可以直接拔除讯号线而不会发出杂音,使用单端RCA头的用家绝不可贸然一试。
Y2 C- X9 Y+ ~/ U0 j- F/ v; [
N. o5 e5 A- _- e0 D+ Z$ ~3 W讯号由输出入端子进入前级之后,利用电路板或隔离讯号线,将讯号引导至切换开关,切换开关负责切换输入的讯源,透过数个切换开关的搭配使用,也可以控制录音输出的讯源种类,方便您一边听音乐,同时录制另一讯源的音乐。讯号经过切换开关之后,再进入左右声道平衡控制电位器,音响使用的平衡电位器为特制的MN型,此种电位器设计特殊,向左边旋转时,左声道的音量维持不变,但右声道则随着角度逐渐衰减,旋钮转至最左边时,右声道恰巧没声音;同理,向右边旋转时,左声道逐渐降低音量,藉此达到控制左右声道音量的目的。正常的使用之下,并不需要调整左右平衡,因此部份前级逐渐省略这项设计,或者将左右平衡电位器隐藏于机箱角落,反正它不常用到。
6 v/ w2 c2 \" @+ z
/ }6 @6 G7 q; N! h经过平衡电位器之后,讯号接着进入音量电位器。音量电位器也使用专用的A型电位器,这种电位器依照对数特性制造,使旋钮旋转的角度,可以随着耳朵的感受而线性增加。正常使用的音量电位器,应该转至那个角度才属正常?这没有一定的答案,要看整体器材搭配的总增益而定。音箱效率高、后级增益大者,前级所需负担的放大倍率就得降低,音量开一点点声音就很大了;反之,单增益前级由于放大倍率仅有一倍,因此往往把音量开到底,仍然还有不够大声的缺憾。正常而言,旋钮位置由九点钟方向至十二点钟方向之间皆正常,转动时也最顺手。
' B5 A: V! j2 Z5 @# Q2 V( J" x! Z$ o1 S/ T4 T- i0 z) O# o+ s
讯号经过音量电位器之后,便直接进入放大电路。放大电路有繁有简,设计形式不一。放大电路输出之后,有的前级会设计哑音Mute继电器,藉此控制前级讯号的输出与否,经过Mute开关之后则直接连至输出端子。
# M) H! \9 X6 x0 M2 x) ?
( G! a: E" w* @0 J前级的运作架构就是:输入→讯号切换→左右平衡→音量控制→放大电路→静音开关→输出。
, ~( Y+ u, n {" g8 q2 a+ ^% I) {" {( F4 c+ {, j. S
主动与被动的差异
) f0 s: j" {5 h! H1 S7 w) P" w2 t) @. C l/ M
「主动」(「有源」)的意义在于电路中使用主动组件,主动式前级便是有源前级,是必须插电才能工作的前级。有前级不需要插电的吗?有的,这就是被动式前级。) b+ X3 y$ J) T/ i$ [
1 {" Q6 s i/ R6 e \" |, K
从电路架构上分析,被动式前级其实就是省略了「放大电路」过程,讯号输入之后,经过讯号切换开关,进入平衡控制(或者将此功能省略),再使用一个音量电位器控制音量,最后直接输出。就控制音量的角度而言,它仅能衰减而无法放大,就阻抗匹配的功能来说,它也无法扮演缓冲的角色,因此被动式前级是最经济也最直接的前级。First Sound是最有名的被动式前级之一,内部仅由切换开关与音量控制器组成,由于没有任何主动组件,因此S/N比相当高。Jeff Roland的Synergy也是楚楚之典范
( b/ Q4 ]: Y" B% ~7 P/ z( @6 G
: |0 P' ~) D; M7 H( }1 b2 i& a主动与被动之间各有哪些优缺点呢?。* s/ Y! w" k( F5 J. P+ M
- |4 I+ H) z4 M主动式前级具备放大电路,可以将输入的讯号放大后输出,因此增益绝对充足有余;被动式前级除非使用被动式升压器提升输出电压,否则是永远不可能达成放大的任务。就缓冲与阻抗匹配的角度来看,主动式前级由于具有主动组件进行讯号放大,因此可以将阻抗特性较高的讯源,转换为较低阻抗的讯号输出,易于驱动后方的后级线路。这也是被动式前级所望尘莫及的要求。被动式前级充其量只能衰减,在音量全开的情况下,等于讯源直入后级,其中并没有任何缓冲的作用。假如使用升压器将电压放大,放大之后的结果也必须遵照质、能不变的物理原理,而增加了输出阻抗。因此几乎没有任何一部被动式前级愿意使用升压器进行电压放大,顶多使用一颗音量电位器控制音量罢了。
( Y/ {- Z# {, d( `5 {! p/ b0 y
8 [' D1 S6 i7 [# r/ k. S既然被动式前级缺点这么多,为何还有存在的必要呢?5 p2 ?3 i2 y2 u1 w2 B% O5 |
z3 e+ H B) h# X; G
因为被动式前级没有放大电路,其讯号通路直接,能够将讯源器材的讯号以最简短的路径直接输出给后级,这就是人们采用被动式前级的初衷。由于不使用主动组件,因此没有任何的失真、音染、噪声、相位飘移等问题,也由于使用机械开关,因此被动式前级也没有增益频宽积的限制,正常设计的被动式前级可以传输数MHz的讯号,尤其是噪声以及S/N比规格两项,几乎没有任何主动式前级可以匹敌。各有优缺点吧!只要该前级适用于您的系统,是没有什么不可以的。6 b# r' E7 s& q; x
1 X7 A5 H6 _8 `' V/ `* a真空管前级
0 W# |+ m# M; H4 N
7 d7 b L/ r' [- f1 g& Q A& q依照电子材料发展的历史来看,最早发明的电子组件是真空管,隔了数十年之后半导体发明,半导体之中先以锗晶体问市,之后才是硅组件的天下,等到制造硅晶体团的技术成熟,才有集成电路(IC)的出现。因此前级使用主动组件的过程,是跟随着半导体组件发展的历程而进步的。最早的前级扩大机全部是应用真空管设计,从电源部份开始,变压器输出交流电压后,便以二极管进行管整流以及管稳压的动作,真空管的整流特性与稳压特性并不理想,因此早期的真空管前级声音普遍也不理想,哼声中夹带着嘶声噪音,S/N比不高、频宽也不够,不过对于当时而言,这已经是不错的产品了!
$ Y& A J1 J4 Z2 `$ [6 _6 Y5 I4 h& R- C/ [
电子组件不断进步,扩大机的电路水平也逐步提升,半导体发明之后,以半导体取代部份真空管,效率不高、功能不佳的真空管整流与管稳压,逐渐被半导体组件所取代。体积小、动作稳定的半导体,制造出了稳定的电源,前级扩大机的性能也提升不少,背景噪音大幅度降低,S/N比马上提高不少,哼声消失了,聆听音乐开始进入更高级的享受。9 w E2 @. B9 X. B, f4 B( a$ t9 W
' l1 E3 ~8 G* g3 g/ ?
至目前为止,大部份的真空管扩大机仍然以半导体稳压为主。其实对于声音而言,真空管确实是无可取代的好组件,它的体积虽大,但却有其独特且无法取代的音色,温暖、醇厚,都是管机常见的特色。坚持使用真空管放大的Audio Research以及Sonic Frontiers,两家的前级几乎全为真空管设计,但不可否认的是,它们设计师仍然偏好使用半导体进行整流与稳压的工作。真空管的电路架构,早在二十年前就已经发展完成,差动、串迭、推挽、倒相,无一不在早期的真空管前级中出现。使用相同的组件要达到相同的目标,方法不外乎是那几样,因此对于现代的真空管设计者而言,电路的创新反而不再是追求的目标,为真空管线路提供一个稳定、干净的电源,搭配质量优秀的被动材料,便能让真空管好好的工作。最后,再藉由零件的搭配,进行调整声音的工作。- j4 N7 T5 M; i2 ^
. u$ ]8 s! w8 a; O6 o
有的真空管前级线路很复杂,有的仅使用一支真空管,这其中有什么差别?难道管子越得越多声音就一定越好吗?这答案当然不一定,目前前级当中真空管使用最多的可能是Sonic Frontiers Line 3,它是Sonic Frontiers最高级的前级,一口气用了12支真空管;而也有不少真空管前级,仅使用一支双三极管进行放大,如Audio Research LS-2。前级使用数量的多寡当然不能表示声音一定好,严谨的态度进行规画与设计,否则真空管的音染、失真等问题,还没开声就已经难以收拾了。设计者进行高级器材的规划时,必然考虑到线路架构与其价格的等级分布,即使以相同的理念设计出不同等级的产品,价位高的声音必然要胜过旗下机种。真空管使用多寡与声音没有绝对的关系,设计者不过将器材设计得更完整严谨,以赢取消费者的信赖罢了。
+ e9 L" I M+ ~# R
! v% s8 s; g# q( i) g7 C2 b5 @真空管前级的巅峰之作,多年前Audio Research的SP-11以及最近热门的Sonic Frontiers Line 3。Sonic Frontiers喜欢使用精密的半导体稳压,配合真空管放大,声音兼具晶体机的透明度与管机的厚度。
) l- {2 ?: m0 o2 p+ c M8 t- c3 b/ ?( X' [% `+ E8 x! u9 v
混血真空管前级% u! c9 o2 l0 ?: N# B
1 e4 J T# s0 Y/ A" ?' `9 t混血前级曾经流行过一阵子,最早Luxman推出了以真空管及晶体管电路的Hybrid线路。混血前级的发展,主要目的在于截长补短,将半导体以及真空管的优点结合在一起,所形成的号召设计。( k* l& B( n& o. u6 ^+ b6 b8 S9 I
K3 K' h) h- K1 f4 F当半导体组件成熟的运用于音响电路中时,真空管似乎一下子失去了原有的地位,没有人对于体积庞大的真空管提起兴趣,音响器材不断标榜着全半导体、全晶体管的设计。但早期的半导体在制造以及线路的构成上,很难避免的会让声音变硬、变冷、甚至于变吵。于是开始有音响迷回头重新寻找管味,原来,音响迷需要的不仅仅是优异的特性,更重要的是回放声音的音乐性。0 V+ ?0 r+ s) r- [; d5 T
8 R6 n Q+ }7 X/ ~% i: x; ~: F# T真空管比较有音乐性吗?5 E. {5 \: w, o6 y7 x
% ^6 l% ]) L- s# r: q% @# c9 ^这当然无法论定,但对于当时而言确是不争的事实。Luxman率先把真空管摆入晶体管线路当中,让真空管负责一级的放大,藉由真空管的独特音色,「感化」晶体管的声音。Audio Research在推出了半导体前级不获好评之后,也重新回头检讨真空管受欢迎的原因。声音,其实才是音响迷注重的焦点;技术,不过是附属的噱头罢了。! v# ~9 ]1 L, D% n
8 \* B6 W5 e5 e3 Y) @* R
Audio Research想到,FET与真空管同属于高输入阻抗组件,但FET却拥有真空管难以企及的频宽,但早期的FET声音偏冷,而真空管却洋溢着温暖的气息,何不将两者的长处融合,于是Audio Research使用FET输入,在输出段加入一支6922真空管,这就是脍炙人口的LS-2胆石混血前级。
5 h+ T* \+ q1 d9 M% t5 ?! X, \6 r6 ]. ]! v8 R( G8 g( U
LS-2的成功推出,确实为混血前级设计开出一条成功的道路,目前市面上仍有许多混血前级,它们同时拥有高频宽的特性,S/N比与晶体机无异,用家还能自行换管调声,反正只要声音好,殊途也同归。4 z: L6 b* O$ r
/ F" s, c5 u, g3 q0 v) MAudio Research喜欢使用半导体与真空管的混血设计,打开内部之后可以发现真空管与晶体管、IC供列于电路板上。, t: y3 J0 j; c8 @$ K! @6 B* d% |8 \
. ]0 `) ^" ?9 d% Y2 |' }
晶体管前级
+ s8 {3 N4 S2 h6 f8 M0 u) r! d2 j- O$ }6 U/ E
晶体管前级当然不限于场效应晶体管(FET)或双极性晶体管(BJT),晶体管的发展就是为了更好的规格而来的,因此当晶体管制造技术逐渐成熟时,音响的用料也朝向全晶体管的方向发展。晶体管与真空管的线路架构虽然类似,但却大不相同。晶体管体积小,可以在有限空间的电路板中大量使用,因此可以将线路设计得更严谨、更精密,不同的晶体管拥有不同的特性,适度的搭配便可以创造极佳的效果。 i; B! Y( J' q$ H9 ?: j
2 F9 J9 k. S7 a6 ~
晶体管线路的发展仍然来自于真空管架构,差动是最长使用的放大方式,单差动、双差动、电流源、达灵顿、串迭等等电路技巧,可以依照设计者的喜好像拼图一般逐步建构,最简单的晶体管放大电路为单端放大,以一颗或以两颗晶体管直接放大;也可以利用复杂的架构,缜密且严谨的盖出高塔。Mark Levinson、Cello Encore、Palette以及Krell、Thershold等公司,是最喜好使用大量晶体管制造器材的公司。他们使用晶体管有几个特色:! k# h& t5 ~$ ~4 Y1 e
7 a7 } r, z) F! F一、数量其多无比,可以使用两颗的绝对不会以一颗解决。
) [6 `) l9 E* g& E1 K+ ]; x二、偏好双极性晶体管,虽然在特性上FET拥有较佳的性能,但也许是习惯加上喜好,一部前级从头到尾几乎全是双极性晶体管。
+ b1 @$ Z& H: W1 U' o三、对于电源供应相当讲究,以晶体管为主的稳压线路,其实就可以达到相当优秀的性能,使用低杂音零件所制造出来的直流电源,杂音特性足以与电池相比。但完美之外还要更完美,Mark Levinson、Cello等设计师,嗜好以多层次稳压,电源从变压器输出之后,以二极管整流,再以电容进行稳压,好戏从这里才开始,利用精密的晶体管稳压电路,稳压之后再稳压,一连两三次的串联稳压,让电源涟波完全没有发生的机会。
3 o ~- `8 ?# Y6 h, |2 d: J1 v
9 [# e) L2 j2 ^) S5 L2 k3 }近代这几家嗜好以晶体管设计前级扩大机的厂家,也开始尝试加入FET以及IC的设计,电路架构依旧复杂无比,但声音却拥有极高度的透明感与分辨率,细节多到吓人的地步,却不见古早晶体管生涩的表情。可见,空凭电路架构与材料种类,并无法推断其声音的绝对表现,过去总有人说:FET的声音较清亮,MOSFET的声音具有真空管味,晶体管生涩没弹性,现在这些说法已经完全不正确了。, \2 C; W$ u4 x5 C- r* ^* Z
" k+ n. f: y% J1 T( T
Mark Levinson、Krell以及Cello等厂商,酷爱使用大量晶体管堆砌线路,打开机箱一看,尽是满满的电阻与晶体管。 ; q- f' m1 b* e& G# B- e
* ?9 L1 v1 p5 }. g+ MIC前级2 ?: | ]1 Z" h/ E! Q& X
r4 ]0 _" R+ h r/ X, F
有人说6DJ8是为音响而设计的真空管,那么NE5534应该就是第一颗专为音响而设计的IC。1981年对IC设计而言,尚不到发达的年代,Philips的子公司推出了NE5534 IC,宣称特别为音响用途而设计,特点是采用双极性晶体差动输入,低阻抗输出,适合在前级线路中使用。NE5534是一颗运算放大器OPAMP,它将放大器线路浓缩于一颗八支脚的IC内,只要附加几颗电阻以及防止震荡的电容,就可以构成前级放大器中所需要的放大电路。消息一出确实轰动业界,原本要使用不算少量零件构成的放大电路,竟然可以使用一颗IC取代,不禁让设计师看了傻眼。不过当时大家普遍不相信IC的声音,总认为它的特性甚差,声音不理想,因此并没有人愿意真正拿OPAMP来做前级的主要放大组件,除了MBL 6010之外。
$ \8 K Y; I M$ u* y; K) E5 B1 j4 S5 N: w/ Q, C
早期的OPAMP特性确实相当不理想,它的回转率低,杂音特性不佳,还得依照不同的电路给予不同程度的补偿修正。但现代的IC性能可不能同日语,现代专为音响而设计的OPAMP,具有如FET及真空管高输入阻抗的优点(具有数M奥姆的输入阻抗,其实比FET还高),同时也有BJT低输出阻抗的优点(可以降至数十奥姆,也比小信号晶体管还低),它的回转率高达数千V / μs,输出中点电压低不可测。不必加装交连电容也可以直入后级,它的频宽更是惊人,直接拿来放大射频讯号也没问题,价格低廉特性超强,早已经成为音响设计必备的放大组件。/ |$ l1 l: s e3 u- z5 U
6 j: i0 @/ ?0 m( t$ }/ r# \
虽然现代的OPAMP特性极佳,但体积却依旧小巧,设计师认为如果一部前级内仅以几颗OP构成,卖得了大钱吗?因此IC前级的发展不在于声音,而是有没有办法卖高价钱。这世界上肯定没有任何前级比MBL 6010更幸运的了,一部前级仅使用十来颗NE5534 OPAMP,身价却高达六十余万元,德国人确实有一套。; p' w3 A2 D6 @0 t2 d% D
1 O' ]/ }& w2 `: D
MBL 6010与McIntosh C100皆以NE 5534做为主要放大组件,所不同的是,mbl 6010的线路相当简洁,而McIntosh C100则使用大量OPAMP盖成一部两层楼的作品。
+ p4 b I: O2 ^数位前级6 G6 G$ s2 X3 h0 B: M- Q
# Y1 z6 o5 ?0 t7 O, D+ i# F: t这是前级发展的新趋势,但碍于技术的研发并不容易,因此能够设计数字前级的厂家并不多。数字前级意味着控制与放大皆采用数字的方式进行,以前级的功能来说的确不必如此麻烦复杂,但尝新总是发展的原动力。数字前级如何工作?模拟讯号输入前级之后,利用内部的A / D转换,将模拟讯号转成数字讯号,再依据音量控制器的大小数据,以DSP进行运算,再以数类转换器的技术将计算之后的数字数据转成模拟讯号,再输出至后级扩大机。如此兜一圈是不是很浪费力气?但Accuphase认为,他们推出DC-300的用意在于宣告,模拟前级他们拥有高完成度的C-290V,为了因应数字时代的来临,推出复杂处理程序的数字前级正是迈入下一个挑战的开始。
% Q! P5 J2 R" O$ `
. S2 } ]1 P& V$ \' ?
/ x& b4 f4 H$ {% A# a# {) k- R9 j9 d @7 \. K E! g- T
|
|
中国hifi音响网
|
|
|