声音听觉理论_二手音频_音频应用论坛 - Powered by AUIOAPP

音频应用论坛

 找回密码
 快速注册

QQ登录

只需一步,快速开始

搜索
热搜: 音频应用

[音频] 声音听觉理论

[复制链接]
254969084 发表于 2016-1-19 13:20:48

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?快速注册

x
由于人耳听觉系统非常复杂,迄今为止人类对它的生理结构和听觉特性还不能从生理解剖角度完全解释清楚。所以,对人耳听觉特性的研究目前仅限于在心理声学和语言声学。
/ K: e7 o& v4 t7 m$ _- y  人耳对不同强度、不同频率声音的听觉范围称为声域。在人耳的声域范围内,声音听觉心理的主观感受主要有响度、音高、音色等特征和掩蔽效应、高频定位等特性。其中响度、音高、音色可以在主观上用来描述具有振幅、频率和相位三个物理量的任何复杂的声音,故又称为声音“三要素”;而在多种音源场合,人耳掩蔽效应等特性更重要,它是心理声学的基础。下面简单介绍一下以上问题。
0 J% j; @. }' _6 N4 B一、声音三要素2 X. F: L0 I% o' J
1.响度
2 G+ s: H/ O0 g* U* ]; C/ D  响度,又称声强或音量,它表示的是声音能量的强弱程度,主要取决于声波振幅的大小。声音的响度一般用声压(达因/平方厘米)或声强(瓦特/平方厘米)来计量,声压的单位为帕(Pa),它与基准声压比值的对数值称为声压级,单位是分贝(dB)。对于响度的心理感受,一般用单位宋(Sone)来度量,并定义lkHz、40dB的纯音的响度为1宋。响度的相对量称为响度级,它表示的是某响度与基准响度比值的对数值,单位为口方(phon),即当人耳感到某声音与1kHz单一频率的纯音同样响时,该声音声压级的分贝数即为其响度级。可见,无论在客观和主观上,这 两个单位的概念是完全不同的,除1kHz纯音外,声压级的值一般不等于响度级的值,使用中要注意。' ^8 S7 ?: H* t! K, R4 z
响度是听觉的基础。正常人听觉的强度范围为0dB—140dB(也有人认为是-5dB—130dB)。固然,超出人耳的可听频率范围(即频域)的声音,即使响度再大,人耳也听不出来(即响度为零)。但在人耳的可听频域内,若声音弱到或强到一定程度,人耳同样是听不到的。当声音减弱到人耳刚刚可以听见时,此时的声音强度称为“听阈”。一般以1kHz纯音为准进行测量,人耳刚能听到的声压为0dB(通常大于0.3dB即有感受)、声强为10-16W/cm2  时的响度级定为0口方。而当声音增强到使人耳感到疼痛时,这个阈值称为“痛阈”。仍以1kHz纯音为准来进行测量,使 人耳感到疼痛时的声压级约达到140dB左右。
$ R$ D. L6 u3 N. g1 M; g& w  实验表明,闻阈和痛阈是随声压、频率变化的。闻阈和痛阈随频率变化的等响度曲线(弗莱彻—芒森曲线)之间的区域就是人耳的听觉范围。通常认为,对于1kHz纯音,0dB—20dB为宁静声,30dB--40dB为微弱声,50dB—70dB为正常声,80dB—100dB为响音声,110dB—130dB为极响声。而对于1kHz以外的可听声,在同一级等响度曲线上有无数个等效的声压—频率值,例如,200Hz的30dB的声音和1kHz的10dB的声音在人耳听起来具有相同的响度,这就是所谓的“等响”。小于0dB闻阈和大于140dB痛阈时为不可听声,即使是人耳最敏感频率范围的声音,人耳也觉察不到。人耳对不同频率的声音闻阈和痛阈不一样,灵敏度也不一样。人耳的痛阈受频率的影响不大,而闻阈随频率变化相当剧烈。人耳对3kHz—5kHz声音最敏感,幅度很小的声音信号都能被人耳听到,而在低频区(如小于800Hz)和高频区(如大于5kHz)人耳对声音的灵敏度要低得多。响度级较小时,高、低频声音灵敏度降低较明显,而低频段比高频段灵敏度降低更加剧烈,一般应特别重视加强低频音量。通常200Hz--3kHz语音声压级以60dB—70dB为宜,频率范围较宽的音乐声压以80dB—90dB最佳。0 ~+ |$ q$ X. }* t( z9 b
2.音高
0 c. n; J3 S. t) }" Z8 O( a  s$ Q  音高也称音调,表示人耳对声音调子高低的主观感受。客观上音高大小主要取决于声波基频的高低,频率高则音调高,反之则低,单位用赫兹(Hz)表示。主观感觉的音高单位是“美”,通常定义响度为40方的1kHz纯音的音高为1000美。赫兹与“美”同样是表示音高的两个不同概念而又有联系的单位。8 m8 h% C8 z( V8 {9 q4 d
人耳对响度的感觉有一个从闻阈到痛阈的范围。人耳对频率的感觉同样有一个从最低可听频率20Hz到最高可听频率别20kHz的范围。响度的测量是以1kHz纯音为基准,同样,音高的测量是以40dB声强的纯音为基准。实验证明,音高与频率之间的变化并非线性关系,除了频率之外,音高还与声音的响度及波形有关。音高的变化与两个频率相对变化的对数成正比。不管原来频率多少,只要两个40dB的纯音频率都增加1个倍频程(即1倍),人耳感受到的音高变化则相同。在音乐声学中,音高的连续变化称为滑音,1个倍频程相当于乐音提高了一个八度音阶。根据人耳对音高的实际感受,人的语音频率范围可放宽到80Hz--12kHz,乐音较宽,效果音则更宽。
2 k; Q, O+ v" p) L9 p  s7 \2 w& ^3.音色
/ H+ F( N' a$ b4 p0 Q  音色又称音品,由声音波形的谐波频谱和包络决定。声音波形的基频所产生的听得最清楚的音称为基音,各次谐波的微小振动所产生的声音称泛音。单一频率的音称为纯音,具有谐波的音称为复音。每个基音都有固有的频率和不同响度的泛音,借此可以区别其它具有相同响度和音调的声音。声音波形各次谐波的比例和随时间的衰减大小决定了各种声源的音色特征,其包络是每个周期波峰间的连线,包络的陡缓影响声音强度的瞬态特性。声音的音色色彩纷呈,变化万千,高保真(Hi—Fi)音响的目标就是要尽可能准确地传输、还原重建原始声场的一切特征,使人们其实地感受到诸如声源定位感、空间包围感、层次厚度感等各种临场听感的立体环绕声效果。: ]2 `4 Z  S/ _2 O" n1 w. v
 另外,表征声音的其它物理特性还有:音值,又称音长,是由振动持续时间的长短决定的。持续的时间长,音则长;反之则短。从以上主观描述声音的三个主要特征看,人耳的听觉特性并非完全线性。声音传到人的耳内经处理后,除了基音外,还会产生各种谐音及它们的和音和差音,并不是所有这些成分都能被感觉。人耳对声音具有接收、选择、分析、判断响度、音高和音品的功能,例如,人耳对高频声音信号只能感受到对声音定位有决定性影响的时域波形的包络(特别是变化快的包络在内耳的延时),而感觉不出单个周期的波形和判断不出频率非常接近的高频信号的方向;以及对声音幅度分辨率低,对相位失真不敏感等。这些涉及心理声学和生理声学方面的复杂问题。) R4 R% l# y' N  W( u% }

) K: ~/ a/ j) ^( ]* f6 R
' ~9 r3 n5 B: h6 @4 l
 楼主| 254969084 发表于 2016-1-19 13:22:09
二、人耳的掩蔽效应
% W# N% k8 m4 r   一个较弱的声音(被掩蔽音)的听觉感受被另一个较强的声音(掩蔽音)影响的现象称为人耳的“掩蔽效应”。被掩蔽音单独存在时的听阈分贝值,或者说在安静环境中能被人耳听到的纯音的最小值称为绝对闻阈。实验表明,3kHz—5kHz绝对闻阈值最小,即人耳对它的微弱声音最敏感;而在低频和高频区绝对闻阈值要大得多。在800Hz--1500Hz范围内闻阈随频率变化最不显著,即在这个范围内语言可储度最高。在掩蔽情况下,提高被掩蔽弱音的强度,使人耳能够听见时的闻阈称为掩蔽闻阈(或称掩蔽门限),被掩蔽弱音必须提高的分贝值称为掩蔽量(或称阈移)。) ?% g) y, |3 D" }# T$ T6 w
1.掩蔽效应3 e, W) ]# Y! }" f/ |
     已有实验表明,纯音对纯音、噪音对纯音的掩蔽效应结论如下:
+ Y( y) M9 Y9 s0 M  x    A.纯音间的掩蔽
0 U9 j8 ^! o) O) w             ①对处于中等强度时的纯音最有效的掩蔽是出现在它的频率附近。* c8 P, v7 L  w0 z
             ②低频的纯音可以有效地掩蔽高频的纯音,而反过来则作用很小。
. B( g* D+ q  D4 T: [4 P    B.噪音对纯音的掩蔽噪音是由多种纯音组成,具有无限宽的频谱' o- E- S5 I( W! T1 j7 ^+ U4 D0 x; |  q
   若掩蔽声为宽带噪声,被掩蔽声为纯音,则它产生的掩蔽门限在低频段一般高于噪声功率谱密度17dB,且较平坦;超过500Hz时大约每十倍频程增大10dB。若掩蔽声为窄带噪声,被掩蔽声为纯音,则情况较复杂。其中位于被掩蔽音附近的由纯音分量组成的窄带噪声即临界频带的掩蔽作用最明显。所谓临界频带是指当某个纯音被以它为中心频率,且具有一定带宽的连续噪声所掩蔽时,如果该纯音刚好能被听到时的功率等于这一频带内噪声的功率,那么这一带宽称为临界频带宽度。临界频带的单位叫巴克(Bark),1Bark=一个临界频带宽度。频率小于500Hz时,1Bark约等于freq/100;频率大于500Hz时,1Bark约等于9+41og(freq/1000),即约为某个纯音中心频率的20%。 通常认为,20Hz--16kHz范围内有24个子临界频带。而当某个纯音位于掩蔽声的临界频带之外时,掩蔽效应仍然存在。
7 T/ {4 U$ L1 }! f2 _; K0 q: T: j2.掩蔽类型
7 o( `3 z+ u9 T0 ~+ @) I+ F) R(1)频域掩蔽
$ S) ~$ m; v' y! A5 w4 P3 M  所谓频域掩蔽是指掩蔽声与被掩蔽声同时作用时发生掩蔽效应,又称同时掩蔽。这时,掩蔽声在掩蔽效应发生期间一直起作用,是一种较强的掩蔽效应。通常,频域中的一个强音会掩蔽与之同时发声的附近的弱音,弱音离强音越近,一般越容易被掩蔽;反之,离强音较远的弱音不容易被掩蔽。例如,—个1000Hz的音比另一个900Hz的音高18dB,则900Hz的音将被1000Hz的音掩蔽。而若1000Hz的音比离它较远的另一个1800Hz的音高18dB,则这两个音将同时被人耳听到。若要让1800Hz的音听不到,则1000Hz的音要比1800Hz的音高45dB。一般来说,低频的音容易掩蔽高频的音;在距离强音较远处,绝对闻阈比该强音所引起的掩蔽阈值高,这时,噪声的掩蔽阈值应取绝对闻阈。
7 ?' a9 J- P7 p% h8 ~(2)时域掩蔽7 [7 O% R# g$ n, _
 所谓时域掩蔽是指掩蔽效应发生在掩蔽声与被掩蔽声不同时出现时,又称异时掩蔽。异时掩蔽又分为导前掩蔽和滞后掩蔽。若掩蔽声音出现之前的一段时间内发生掩蔽效应,则称为导前掩蔽;否则称为滞后掩蔽。产生时域掩蔽的主要原因是人的大脑处理信息需要花费一定的时间,异时掩蔽也随着时间的推移很快会衰减,是一种弱掩蔽效应。一般情况下,导前掩蔽只有3ms—20ms,而滞后掩蔽却可以持续50ms—100ms。+ U8 V  m% d8 M& g) v# s9 n

3 ^/ V/ s1 t9 C7 R; J混响与扩散的基本理论7 p% a  d3 C; [: B7 b1 N1 n
# n& k+ l# E0 o" S# \4 h
室内声场的统计研究是以分析室内混响过程为其主要内容的。将统计声学用于分析室内声场时,要满足的第一个条件则是这一声场必须是扩散声场。可见,扩散与混响有着十分密切的关系。
" @1 @9 O4 }5 t- q$ t$ p  可以对混响作以下描述:在室内声场达到稳定的情况下,声源停止发声,由于声音的多次反射或散射,而使其延续的现象即为混响。这种现象是封闭空间中(室内)声场的一个重要特征。
6 @1 A1 m# S# X- N% ~+ r  试考虑一种极端的情况。设想一束声波(可用一条声线代表)在一个形状不规则的刚性壁面的大房间中传播。显然,这一声束在到达边界面(壁面、天花板或地面)之前;它是以直线方式传播的。一且到达某一边界面,它就按照反射定律反射。经反射后的这一声束将改变原来的传播方向继续传播。经过某一传播距离之后,它又到达另一边界面,并再次反射,以新的传播方向又继续向前传播,依此类推。对于形状不规则的大房间而言,任何方向的入射波经过若干次反射之后,总可以改变为沿某一特定方向传播的反射声。由于声波在室内各反射面上连续反射,并不断改变其传播方向,这种能使室内任一位置上的声波可以沿所有方向传播的声场称为扩散声场。
& `) ^! F# {& z. X* W  r/ ]
# ^: E$ j9 R6 t9 a& c/ D9 l& @  这里所说的:“扩散”,具有明确的.物理意义。严格意义上的扩散声场必须满足以下三个条件:
! c2 x! z) |. d( s  (1)室内的声能密度均匀,即声能密度处处相等;. ]3 c* o" J! F6 m; x9 z
  (2)声能在室内各个方向传递的几率相等;
- o, Y1 \( N: N- |7 `) `  (3)从室内各个方向到达任一点的声波,其相位是无规的。在这样的声场中,声波无论在空间位置上,还是在传播方向上都不会一成不变地“聚集”在一起,而是随着传播过程的进行逐渐扩展,并分散开来,直至充满全部空间并遍及所有方向。
) f6 b% n9 D/ [# I  在一般情况下,扩散声场的条件是难以满足的,但在一定条件下,把不规则的大房间中的声场近似地作为扩散声场处理,所得的结果与实际情况相差不大。然而,如果房间的形状简单而规则,情况则不然。这时在室内就可能出现声场的严重“不扩散”状况,声波就可能在某些位置或某些方向上特别加强,而在另一些位置或方向上特别削弱。例如在圆形大厅中,声波将聚集在大厅中部;在正方形房间中,沿某些方向的驻波将较强等等。
5 _$ p* p6 D& k+ B8 z, w  为了尽可能在室内形成扩散声场,应避免采用凹形壁面,而凸面反射体的正确使用,则是使室内声场趋向扩散的一种有效方法。这种能够促进声场扩散的反射体通常称为声扩散体。/ b% ~1 A# {7 N0 H9 h* V7 t" s; N
  在以上分析讨论中,实质上包含着几何声学的基本概念。因此,虽然可以对室内声场与体型之间的关系作定性的说明,但却难以对某些假定作出明确的解析。例如,为什么要假定是形状不规则的大房间?对于小房间,即使形状不规则的小房间是否适用呢?对于这类问题,只能用封闭空间声场的波动理论才可能获得满意的说明。哪怕因计算异常繁杂而难以得到定量的结果,但在理论上至少可以给予指导性的解析。
) M" K. y8 |5 e  混响声场通常指的是由反射声形成的声场。严格地说,它必须是扩散声场,亦即满足扩散声场的要求是混响声场的必要条件。在实际应用中,由于扩散声场的要求大多数是难以满足的,所指的混响声场基本上是通常意义上的反射声形成的声场。明确这一点是重要的,因为这是统计理论所得的结果与实际情况有一定距离的一个重要原因。9 H3 R2 e$ i4 S' l3 O
  混响对房间的音质有重要影响,它是决定房间音质的必要条件。因此有必要对其进行定量量度。这—工作首先由W·C·赛宾(Sabine)于二十世纪初提出并加以实践。为了使混响的量度仅仅取决于房间本身的声学特性,而排除其它因素(如室内原声场声级的大小及背景噪声水平等)的影响,使其具有良好的重复性,目前国际上公认的是以室内声场的声能密度衰减到原始值的百万分之一时所经过的时间进行量度,称为混响时间。因此,混响时间可定义为室内声音已达到稳态后停止声源发声,平均声能密度自原始值衰减60分贝所需的时间,并用T60或RT表示。在实际测量时,由于种种条件的限制,往往不可能获得衰减60分贝的相应时间,通常以开始一段的声压级衰变情况为基本依据,然后外推到衰变60分贝时所需要的时间。
! ~; i+ R& ~/ n 听感舒适度与人耳等响度曲线 + D& e% i/ `% H6 [6 v- {+ a

$ o" ]% {7 ~$ p4 `/ ~+ M# d 为什么说有些调试得很平的音响系统却让人感觉听感不舒适?, }5 x/ [/ M  C2 L$ e. K
其中一个原因在于我们人类的听觉系统,对于不同频率的声音的音量敏感度不同。一般来说,人耳对于低频和高频的声音的敏感度较低,而对中高频的敏感度较高。播放同样声压级的不同频率的声音,人就会觉得较低频率和较高频率的声音的音量较小,而觉得中高频的声音的音量较大。在这种情况下,在一个调平了的系统上(除去用不正确的手法调试的平的系统),因为系统对各个频段的声音表现是一致的,如果对音源(比如话筒)的信号特性不进行均衡调整,就会感觉到低频和高频的声音较弱,而中高频的声音较响,所以就会感觉到有些刺耳。% f: z: R: ?6 m# g

* L) L+ G! }4 [4 K: F在这个曲线上,标明了人耳在不同声压级情况下,对于不同频段的声音响度(也就是音量)感觉相同的时候,对不同频段的声音的声压级要求。比如最下面的一条实线,就表明了人耳在感觉同等响度的情况下,100赫兹的声音,声压级需要30分贝左右,而对1000-2000赫兹的声音的声压级只需要达到10分贝左右,对于4000赫兹的声音,声压级更低至不到5分贝。注:曲线越凹陷代表人耳对凹陷频段的敏感度就越高。  i8 Q4 }1 f, i9 f0 t: g7 W
同样,在这个曲线上,随着总声压级的不断提高,人耳对于低频和中高频声音的敏感度也逐步提高,曲线相比低声压级时就趋于平坦。但是,在2000-5000赫兹这个频段上仍保持较高的敏感度,而这段声音往往容易令人产生刺耳或者发炸的感觉。4 L+ g3 ^! M+ v) W
那么是不是要在调试系统均衡器的时候把系统均衡器不是按照把系统频响曲线调平直了,而是按照人耳的听觉等响度曲线进行调节呢?其实不是的,系统均衡是让你对系统的频响响应进行控制,让你的系统能够正确表达出实际的声音(虽然可能原本实际的声音是不好听的声音)。而调节出符合人耳听音特性的工作,实际上在你在调音台上进行调音的时候就已经在进行了。你想想,当你使用调音台上的均衡对着话筒讲话调音,或者调节乐器的声音的时候,是不是已经开始按照要把声音调好听了、调舒服了的原则在进行了?实际上调音(注意:不是调音响),就是按照满足人听音特性的要求去调,而不是按照测试频谱结果去调(至于调得对不对,调得好听不好听,那就得看调音的人对声音的理解和把握准不准了,呵呵)。
6 `1 V3 ~: j- \, G% F+ T而针对播放比如CD之类的录音作品,在一个频响曲线做平了的系统,是不是也要一定在调音台上按照人耳听觉特性去进行调整呢?答案也是不用的。因为,在一个录音作品的制作过程中,录音师也好,混音师也好,都是凭耳朵来进行各方面的调整,要调出好听的声音而不是机械平直的声音,这个过程实际上也是按照人耳的听觉特性调整好了整个作品的音频特性。那么在一个还原度较好的系统上播放这种已经按人耳听觉特性调整好频率特性的录音作品,自然放出来的声音就是符合人耳听觉特性的了。当然了,对于播放一些粗制滥造的录音作品就另当别论了。8 x9 d5 l, k4 n) \- L' f
那么对于什么场合使用等响度原则?在扩声领域来说,一般对于播放那些电子舞曲类(DJ们用电脑软件合成的舞曲,后期的处理较为简单,声音也比较机械。)的娱乐场合,就比较适合按照人耳等响度曲线去进行修饰。因为这种场合属于长时间处于高声压状态,先把系统特性调平(调不平你都不知道你这个系统出的声音对不对头),再弄一台均衡器或用调音台上的均衡按照等响度原则调试,就可以提供一种令人的耳朵感觉比较舒适的声音效果。
; z- \* C/ A) `0 e1 d% A5 d; D3 P$ S
您需要登录后才可以回帖 登录 | 快速注册

本版积分规则

软硬产品代理咨询服务:声卡:雅马哈UR22C、罗兰声卡、福克斯特、艾肯、阿波罗 、M-audio 、普瑞声纳 、福克斯特、 达思冠系列 音箱:吸顶NS-IW560C、吸顶NS-IW660 、NS-AW350、低音NS-SW050、低音NS-SW100;JBL 吸顶8124、CSS-8006BM;香蕉猴 gibbon系列;普瑞声纳E5XT、E4.5、 E3.5BT 有线话筒:舒尔PGA27、PGA48、MV51、mv88、mv88+、SM27 ;森海E945 、MK4、E835S;舒伯乐top248s;罗德NT1-A、VIDEOMIC、VIDEOMIC GO、VideoMicro、VideoMic NTG 无线领夹麦克风:罗德 wireless go II 一拖一、一拖二;猛犸lark150 耳机:森海HD300 pro、美奇 CR-Buds 、索尼7506、爱科技K240S、K240 MKII、K271 MKII、K52、K72、K92、先锋、飞利浦 1:飞利浦会务通/会议摄像头/全向麦克风/执法仪/录音笔 2:洋铭便携式移动演播室 / 切换台 / 摄控一体摄像机 / 虚拟演播室 / 微金课教室 / 色键器 3:逻兰音视频切换台 / 声卡 / 电子鼓 /电钢琴 /耳机 4:Blackmagic专业摄影机 /调色台 / 切换台/ 广播级转换器 / 监视器 / 采集卡 5:索尼专业摄像机/佳能专业摄像机/松下专业摄像机/ insta360专业摄像机 6:话筒:铁三角/ 舒尔/ 森海塞尔 / AKG / RODE/ BBS 7:音响:YAMAHA/ 声艺 / 皇冠 /JBL / 真力/咪宝/BOSE /美奇 8:声卡:RME/羚羊/IXI /艾肯/PreSonus普瑞声纳/Focusrite福克斯特/YAMAHA/雅马哈/ickb 9:耳机:铁三角/beyerdynamic拜亚动力/AKG爱科技/索尼/RunningMan/美技 10:思锐三脚架 /防潮箱 /米泊三脚架/意美捷三脚架/曼富图三脚架 11:XSW系列,300.500代理商,EWD数字系列代理,6000.9000定制产品,还包销了全国三个型号:XSW1-825,EW100 G4-945,EWD- kk 205

小黑屋|手机版|Archiver|音频应用 (鄂ICP备13005321号-1)

Powered by Audio app

快速回复 返回顶部 返回列表