马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有帐号?快速注册
x
在无线系统中,即使导致接收机较差信噪比输出还有其它一些普遍的原因,无经验的用户经常抱怨“干扰信号”是引发噪音的关键。射频信号(无线电射频干扰)是最模糊不清的一个过程。关于无线话筒系统,干扰通常定义为引发失真或噪音的非预期性射频信号。它也会限制操作范围和失真。干扰会从外部射频信号源,比如电视广播中产生,或者可在无线系统本身中产生。在同一位置操作多个系统也会产生干扰。对于更加复杂的问题,干扰也可能是由所有这些干扰源相结合所产生出来的。9 C; E% t) d6 m W" y1 f5 t
在单一通道的无线系统中,干扰通常来自于一个外部射频信号或靠近接收机的射频噪音。这种类型的音频射频干扰通常源自系统载频上的信号,或位于接收机内部工作的中频频点上。在多通道无线系统中,由于无线系统自身在整个系统内可以产生射频干扰,无线电信号干扰是相当复杂的问题。! _, X4 H; X9 ]7 {% I6 V/ J; n
多通道无线系统总是需要较高性能的设备,而不同于简单的一两个通道系统,原因如下:
4 P1 D/ m0 ?1 R 1.不论是单通道还是多通道配置,来自外部信息源的干扰对任何无线系统来说是一个问题。在多个接收机系统中,存在许多外部射频频率干扰的可能性。9 D9 h+ O6 F/ i y1 c8 v3 _
2.除了外部射频频率干扰问题,存在由多个接收机和发射机自身产生的“系统内部”射频频率干扰问题。这些“系统内部”射频频率干扰问题通常很多,并且比外部射频频率干扰问题更难解决。
" O% t% z2 d% y" ` 3.此外,外部干扰源与系统内的正常射频信号相结合以引发额外的问题。" p' {1 w. e: M/ Y, g7 x" S
理论上讲将无线频率的间距加大来避免诸多问题是可能的,然而这也同时限制了任意位置中无线系统最大可同时使用的频点数量。如果在某一位置使用者需要大量的通道,那么其中的某些通道将会被放置得非常紧凑。就单独的无线系统设计来说,这将划分得清晰明了。
8 o# i' j1 s1 B+ k
- k/ k4 s& j9 ~0 { 频率干扰的外部来源2 _& P% g; W w. {% ^6 z6 J
3 R- P% `5 j2 a9 |: k
无线话筒系统在FCC(联邦通讯委员会)分配的特殊说明的频段中工作。每个人都想获得更多的频段空间,各种射频设备在任何允许的功率强度下为他们工作。这类应用包括无线话筒,内部通讯联络系统,耳内监听系统,遥控系统,通信系统,视频信号,数字数据传输等等。简单的事实是,可用的频谱也是一种有限资源,无法满足所有的需求。因此,留给我们的就只剩下“共享的频谱空间”,在那里,无线话筒系统使用与其它“重要”用户一样的频段。 U V0 a1 |, J6 Q, s* e
无线话筒系统通常工作在从150MHz到216MHz的几个频段中,这包括VHF电视通道7至13,或在470MHz到806MHz的UHF频段(电视通道14到69)。在撰写这本手册之时,电视通道60到69(746到806MHz)重新划分给其他应用设备。另外,从470到约516MHz的频段也重新划分给公用安全应用设备。更多频谱使用的需求逐渐增加,而无线话筒的可用频谱却日渐减少。, S3 C) `4 E; b( W. T( K |" b
电视频段之上是UHF频谱的另一部分,从902到928MHz。此上部UHF频段是由大多数不同应用设备(从车库开门器和业余无线电到家庭用无线电话)所使用的“通用”频段。一般上来说,902到928MHz之间的频段对无线话筒系统不是一个很好的选择,尤其是频繁更换地点的专业音频应用。实质上,该频段中肯定有干扰。
0 |! `: y# a' l) }* D 由于多通道无线话筒系统经常使用不活跃的电视通道,在特殊地区运行多通道系统时,你首先要考虑的一个因素通常包括分析本地电视台。如果你尝试用无线话筒系统与本地电视台传输以相同的频点工作,靠电池供电的发射机信号不太可能会压过本地电视台发出的信号(它可是靠胡佛大坝供电的!)。由于数字电视在广播中出现,加上模拟电视广播信号保持活跃,可用的频段极大地减少了。6 b6 [8 K W) V" E/ p
也有许多商业无线广播服务共享非广播VHF频谱,在频率上与无线话筒分配的频率相当接近。这种类型的干扰几率较少,通常会导致某种程度的频率互调,而不太会对无线话筒的工作频率形成直接干扰。外部直接干扰源还可以出自双向对讲机通话系统,CCTV系统中有漏缝的电缆,临时安装的无线系统,无线内部通讯系统以及许多其它的无线设备。! C; T- J# t6 ~
/ Q7 o$ h( e; F- ~; p, x- m
, }3 S; b ] |, ^ o0 o+ F" _% [" l2 a. T: c( \: H+ L% Q
频率干扰的外部来源" X9 N6 F/ W i. k+ Z" [
$ U$ y9 J9 U' f& F6 S4 E g
除了来自外部无线电设备的直接信号,也存在大量其他的频率干扰源、这种干扰源被称作“人类产生的噪声”。这种干扰通常是宽频段射频噪音,它由许多不同类型的设备所产生,其中包括切换电源、计算机、计算机外围设备、数字信号处理设备以及各种类型的电力设备。定位出自这些类型的干扰源的方法通常是一次关掉一个设备,并且在排除过程中找出事故原因。
" ~7 E' T f! N# ?- D+ q 对无线系统做“声音检测”就像检测声音系统本身一样必要。通常电视台每天以连续的载频信号24小时进行工作,因此,如果射频信号是由本地电视传输所引发的问题,它将是个常量。然而,商业无线电服务通常在晚上5点到8点的上班时间进行工作,因此晚上的时间普遍没有无线电信号的干扰。地区中其它无线电信号(存在许多这样的信号)可能会在任何时刻工作,所以你不能简单地预测它们何时会产生干扰射频信号。; `1 [$ b# U4 ^2 @, v: i
最好的方法就是选择不受干扰的电视通道,制订完善的系统频率协调方案并且只使用最高选择性的、可以提供很好的互调和镜像及衍生频率干扰抑制的接收机进行工作。如果你不了解如何评价一台特殊接收机的选择性或IM抑制能力,可以打电话给生产厂商。如果他们不能给你详尽的解释,你应该寻求其它的解决办法,因为这是任何无线话筒接收机最基本的方面之一。在广告中做“大肆宣传”是一件事,而值得信赖的射频性能表现则是另一回事。
8 K. H* w: f5 r6 @9 ~/ ]
+ T0 @" o, [2 I4 N. m: Y' J8 } 互调, e6 h. P! h7 w& |- S3 W2 D
: r6 [1 }; _( w. \0 O" W 所有的有源设备,比如晶体管,都是非线性的。当两个或更多的信号以任何强度同时出现在非线性的电子设备中时,就会发生“互调”现象。在音频放大器中,可以称之为“互调失真”或“IM失真”。例如,如果两个信号在电路组件中位于同一个点上,一个迭加和差频信号就会产生。这称作二次互调,由于包含两个信号,每个频率的一次谐波就是其频率本身。
, D# A) z+ ~3 Z# i: a1 _4 Y) o6 b/ d) ~) o
- R( v4 V2 f6 t- Z" ?
互调. c: V9 S B9 a" `9 R% ^+ m
9 e. t% o0 { q& N9 B
在这个二次互调的例子中,频率(89和98MHz)属于商业调频无线电频段。一般来说,即使商业调频无线电频段已经十分饱和,发射机通常发射出50千瓦的功率,但由于这些频点离无线接收机的工作频点很远,所以接收机前级IF滤波器可以很轻松地将其过滤掉。因此,在该例子中185MHz的理论信号事实上从未在接收机上产生。除了在两种例外的情况下(这两种情况将在这章题为RFINSYSTEM中予以讨论),像这样来自两个外部干扰源的二次互调很少在接收机上引发问题。1 x8 _. r. S, g& k; F
即使具有很高选择性的接收机接收前级也不能绝对避免“三次互调谐波”所造成的问题。在三次互调谐波的情况下,很多干扰信号同时离得很近并且接近于接收机的工作频点。这种情况下,干扰频率会恰好通过接收机上的前级滤波器并在第一个混频器中产生互调信号。) n0 O) s; X8 i, o% H* e7 E# |; I) |
三次互调谐波会发生在三个信号的进行混合的过程中,或者一个信号与另一个信号的二次谐波的混合中。在无线系统中这主要出现在两种地方;接收机的第一个混频器上和几个发射机之间。如果两个发射机彼此间距只有几英尺,发射机的输出阶段会将两个信号混合而产生有趣的结果。
. z+ q, z/ x+ |2 B5 Z
! |9 Y" j r$ M4 n' q2 Q- {+ a: C$ k3 L' \" p ?
% r% Y. W* \0 j& n/ c
6 O! {& G+ E) J0 Z3 ^! `4 `$ i6 }4 o4 j: z/ U
( S) i7 u0 H6 G$ R 三次互调谐波 |