高效率高谐波抑制功率放大器的设计_功放_音频应用论坛 - Powered by AUIOAPP

音频应用论坛

 找回密码
 快速注册

QQ登录

只需一步,快速开始

搜索
热搜: 音频应用

[资讯] 高效率高谐波抑制功率放大器的设计

[复制链接]
xatbh 发表于 2006-5-22 23:01:00

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?快速注册

x
0 引言
# E0 F! Z9 C- w1 f0 j; M  z随着无线通信的快速发展和广泛普及,无线系统标准对收发机的性能要求越来越高。功率放大器作为发射机的主要组成部分,其指标决定着发射机的性能,如效率 决定着整机功耗,线性度决定着整机的动态范围,谐波分量大小又是发射机线性度的度量。传统的功率放大器为了获得较高效率,功放管通常会工作于饱和状态,这 时将有大量的谐波分量产生。如果不对谐波分量加以回收和抑制,这不单会造成能量的浪费,降低了其效率,还会对其他信道的信号造成干扰。
& o; z8 P3 E" D* Q8 g. Y
" B# i5 H* @* K通常功率放大 器为了获得较高的效率和较低的谐波分量都使得功率放大器工作于F类,但该结构需要采用λ/4传输线,占用空间面大,不利于小型化。采用了 低通输出匹配网络设计了一个工作于E类的功率放大器,在11 dBm输入时的2~5阶谐波分量分别为:-19 dBc、-30 dBc、-38.5 dBc、-41.7 dBc。但该结构采用E类放大器,它要求功放管具有较高的集电极击穿电压,这与集成电路发展趋势相违背。采用GaN工艺设计的功率放大器,为了 获得较好的谐波性能,该设计在输出匹配网络中引入了两根开路传输线,但开路传输线的使用使得该方法与现代电路向小型化、集成度高方向发展相违背。
% P: I2 F" W) Z5 q/ j$ U4 r4 r& P
/ G- P$ d/ a3 F; o2 b- o$ o本文提出了一种结构简单、利于集成且具有谐波抑制功能的输出匹配网络,利用该方法采用InGaP/GaAs HBT工艺设计了一个工作于2 GHz频率的功率放大器。测试结果表明,利用该方法设计的功率放大器获得了较高的效率和很好的谐波性能。; L6 L/ Q& z, z- ?3 }  q; o
3 z( I0 h, Q0 I, X9 j  _- t
1 电路设计
4 v- M$ l7 e- _; g一个典型的功率放大器通常由输入匹配网络、放大电路、直流偏置电路和输出匹配网络组成。然而对功率放大器性能起决定性作用的还是匹配网络。它作为 功率放大器的重要组成部分,任何一个不合适的匹配网络都可能会引起电路的不稳定,导致功率放大器输出功率小、效率低,恶化其线性度。设计匹配网络时,在满 足基本的阻抗变换的同时,还要兼顾到其谐波阻抗,插入损耗以及网络的带宽,最后还需要考虑所设计的网络是否易于实现以及小型化。
5 Z, J& |9 C5 l6 D & w$ Y9 n. y4 D$ m& q. W
1.1 具有谐波抑制功能的输出匹配网络
/ y$ A* B! W3 x# U输出匹配网络作为匹配网络中最重要的部分,决定着功率放大器的功率和效率,以及最终功率放大器的谐波性能。文献[6-7]详细说明了输出匹配网络二次谐 波阻抗对其效率的影响,但都忽略了高次谐波的影响。本文设计的输出匹配网络在考虑二次谐波阻抗的同时,还兼顾了高次谐波阻抗,其结构如图1所示。
, s) l  Q" E8 A0 H% J' o
/ g5 ^/ }2 m2 O% J" d( C8 F
* ]( M* s3 y1 Y+ D其中C1起隔直作用,L1、C3和L5、C2构成一个二级低通网络,在基频时主要起阻抗变换作用,在高阶奇次谐波处呈现出高阻抗,C4和L4构成一个串 联LC谐振网络,谐振频率为2ω0,其中ω0为基频,使得输出网络在二次谐波处得到一个短路的负载。该结构类似于F类功率放大器[8],对奇次谐波负载呈 现高阻抗,对偶次谐波负载呈现低阻抗,有利于对功放管的输出电压电流波形进行整形,减小两者之间的重合提高了效率[9]。同时为了对高次谐波能量进行回收 和抑制,在该两级LC低通匹配中加入了两个电感L3和L2,它和C3、C2构成一个串联谐振网络,谐振频率分别为3ω0和5ω0,即分别对3次谐波和5次 谐波进行处理。输出匹配结构的分析如下:对于功放管的负载,它的值大小与输出功率的关系为:6 l( K( d/ T8 Y# K

# z7 d6 m( A) l) d4 o( r
5 ]+ D" _- U) k
9 e* L  ~( y# C3 u- W4 q- K1 W4 T为了获得较好的网络带宽,两级LC低通匹配网络中间级的阻抗为:8 j) G# p1 ~: ^7 O1 O' Y* H$ N! Q
) e6 D' g8 X1 ?( }  H
& E0 ^( i8 p. |( P+ |! _
2 a5 u1 ?) }; n; f  H
7 c* e7 y8 B  j& c7 {
对于由LC构成的谐波处理网络,当其谐振在高次谐波频率上时,在基频处,该网络等效为一个电容,如图2所示,设L2C2谐振在n次谐波处(图2(a)),在基频处它等效为电容Ceq1(图2(b)),其关系为:6 K+ b9 M! c4 C) _1 c; [+ x: z% A

+ ^5 K+ [' C; d# i- w# D% _. G6 V/ n) r2 `9 j1 d5 ^
工作于基频时,该网络的阻抗为:
! x: H% R! ~9 Y. T) i9 G5 c0 Z
" p( u, I0 r- ]联立(3)(4)两式得:
0 c6 W$ Q# q* H0 u6 X* y& a
! M* l6 s' Q! W$ i) f& o
/ J7 ^& Y! b: z2 |即谐振网络在基频处的等效电容与谐振网络的电容关系为:" i8 m: I( ~, R7 B4 @

: p8 O5 a$ N1 V% _5 \
* O+ k6 f: l1 V; q' }% m# h8 Y; n. o/ U( N( [
对于本设计因L2C2谐振在5次谐波频率处,L3C3谐振在3次谐波频率处,所以有:, U" N$ {& A" V# [$ d

5 c6 T; L+ Z0 ]0 g- v
; }) p  x( x" k( h/ V( l对于L4C4组成的串联谐振网络,其谐振频率为2ω0,主要用于回收2次谐波能量,这样能对功放管输出端的电压和电流波形进行整形,减小两者之间的重合,提高功率放大器的效率。电容电感两者之间满足以下关系式:4 E& o3 b0 Q) d0 H
4 C( f% a8 Y6 }% K

2 o4 I7 h8 A$ J1.2 整体电路设计7 Z, _' W' u5 n, ]
本文采用以上介绍的具有谐波抑制功能的输出匹配网络,采用InGaP/GaAs HBT工艺设计了一个工作于2 GHz频率的高效率高谐波抑制的功率放大器,该放大器采用三级放大结构,供电电压为5 V,具体电路结构如图3所示。8 ~! _+ c5 N3 n" R

" M5 t, W& `  J
  Q! @3 h( {. c5 q$ z5 n, @/ T# F5 v8 z该设计为了获得高的增益采用了三级放大结构,其中第一级工作于A类状态,以获得高的线性度,该级采用了一个RC负反馈使电路能稳定工作;第二级工作于浅 AB类状态;第三级为了获得高的效率工作于深AB类状态。其中虚线方框内的部分为片内实现,方框外的部分采用多层基板、绑定线和贴片元件来实现。对于级间 匹配网络,匹配电感于外部绑定线实现有助于减少级间匹配网络的插损,获得了较高的效率和功率,同时调试灵活方便。对于输出匹配网络,其中L4由绑定线和基 板上的传输线共同组成,通过调节金线的长度,可以控制二次谐波分量的大小。而对于L3和L2,由于该网络是对高次谐波进行抑制,所需电感较小,主要是由多 层基板的过孔构成。7 [+ T% ~9 z% H+ G4 Q7 J3 K& q
( B/ m6 q# e/ R
2 测试结果
% q0 n) f) ~" {3 b7 s' v( Y8 V; U3 r3 n' m- ^8 g- e
+ {( _7 a! R, z$ q3 r4 B' s1 I9 ^
本芯片采用InGaP/GaAs HBT工艺制作,图4为芯片实物图,DIE面积为1 mm×1 mm,整体封装大小为4 mm×4 mm。图5为本设计S参数测试结果,测试平台为安捷伦矢量网络分析仪E5071C。测试结果表明,在2 GHz频率处该设计的S参数为:S21=35.1 dB,S11<-10 dB,S22<-10 dB,从S参数看出本设计获得了很好的小信号性能。图6为输出功率和输入功率的关系图,从图可知当Pin小于0 dBm时,放大器工作于线性工作状态,当Pin大于0时开始出现压缩,到达3 dBm时,输出功率已经饱和,此时Pout=35.2 dBm,放大器的1 dB压缩点为P1dB=34.2 dBm。& X9 d& ]) W& i- {; ^1 B; s: R+ t1 W; s

; L, E1 |0 @) Q0 S) O4 S$ {从该图可知,该放大器获得了较好的线性度。图7为增益Gain和效率PAE随着输入功率的变化的曲线图,该图表明该设计的增益在Pin<0 dBm时,增益波动小于0.2 dB,表明该设计获得了很好的AM-AM,在饱和工作时,即Pout=35.2 dBm时,效率为PAE=48%;工作于1 dB压缩点时,即Pout=34.2 dBm时,效率为PAE=43%。从效率曲线图可知,该放大器不但在饱和工作时获得了很高的效率,在线性工作时也获得了很好的效率。表1是该设计的谐波性 能与其他设计的比较,从表1可知本设计在考虑二次谐波同时还兼顾了高次谐波,达到了良好的谐波抑制,特别是在对高次谐波的处理上。' Y; T. V+ Y; V* B' B
% v" p6 I! }6 k+ y
' K& W% A8 F- W! q0 S1 m) `* e, B
% o& Q& S  w: B+ H" g  [

7 G" b* \6 c2 Q2 ^/ J! o 5 `, K: f8 U$ O5 Q+ F7 U- ?
3 总结- Q6 Y. g3 g' H8 u
本文通过在功率放大器的输出匹配网络中引入多个LC谐振网络来对功率放大器的谐波能量进行回收和利用,提高了功率放大器的效率,抑制了负载端的谐波分 量。该方法简单,易于实现及利于功率放大器的小型化。利用该方法设计了一个工作于2 GHz频率的功率放大器,该功率放大器的实测结果为:增益为Gain=35 dB,1 dB压缩点为P1dB=34.2 dBm,饱和工作时效率为PAE=48%,各次谐波分量大小分别为:HD2=-53 dBc、HD3=-58 dBc、HD4=-65 dBc、HD5=-60 dBc。测试结果表明,该方法设计的功率放大器获得了很好的效率和谐波性能。
您需要登录后才可以回帖 登录 | 快速注册

本版积分规则

软硬产品代理咨询服务:声卡:雅马哈UR22C、罗兰声卡、福克斯特、艾肯、阿波罗 、M-audio 、普瑞声纳 、福克斯特、 达思冠系列 音箱:吸顶NS-IW560C、吸顶NS-IW660 、NS-AW350、低音NS-SW050、低音NS-SW100;JBL 吸顶8124、CSS-8006BM;香蕉猴 gibbon系列;普瑞声纳E5XT、E4.5、 E3.5BT 有线话筒:舒尔PGA27、PGA48、MV51、mv88、mv88+、SM27 ;森海E945 、MK4、E835S;舒伯乐top248s;罗德NT1-A、VIDEOMIC、VIDEOMIC GO、VideoMicro、VideoMic NTG 无线领夹麦克风:罗德 wireless go II 一拖一、一拖二;猛犸lark150 耳机:森海HD300 pro、美奇 CR-Buds 、索尼7506、爱科技K240S、K240 MKII、K271 MKII、K52、K72、K92、先锋、飞利浦 1:飞利浦会务通/会议摄像头/全向麦克风/执法仪/录音笔 2:洋铭便携式移动演播室 / 切换台 / 摄控一体摄像机 / 虚拟演播室 / 微金课教室 / 色键器 3:逻兰音视频切换台 / 声卡 / 电子鼓 /电钢琴 /耳机 4:Blackmagic专业摄影机 /调色台 / 切换台/ 广播级转换器 / 监视器 / 采集卡 5:索尼专业摄像机/佳能专业摄像机/松下专业摄像机/ insta360专业摄像机 6:话筒:铁三角/ 舒尔/ 森海塞尔 / AKG / RODE/ BBS 7:音响:YAMAHA/ 声艺 / 皇冠 /JBL / 真力/咪宝/BOSE /美奇 8:声卡:RME/羚羊/IXI /艾肯/PreSonus普瑞声纳/Focusrite福克斯特/YAMAHA/雅马哈/ickb 9:耳机:铁三角/beyerdynamic拜亚动力/AKG爱科技/索尼/RunningMan/美技 10:思锐三脚架 /防潮箱 /米泊三脚架/意美捷三脚架/曼富图三脚架 11:XSW系列,300.500代理商,EWD数字系列代理,6000.9000定制产品,还包销了全国三个型号:XSW1-825,EW100 G4-945,EWD- kk 205

小黑屋|手机版|Archiver|音频应用 (鄂ICP备13005321号-1)

Powered by Audio app

快速回复 返回顶部 返回列表