何盛明
发表于 2004-11-4 23:47:00
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有帐号?快速注册
x
实际上印刷线路板(PCB) 是由电气线性材料构成的,也即其阻抗应是恒定的。那么,PCB为什么会将非线性引入信号内呢?答案在于:相对于电流流过的地方来说,PCB布局是“空间非线性”的。
# ]$ B/ j* r8 j2 \7 _2 Y9 q% L! U放大器是从这个电源还是从另外一个电源获取电流,取决于加负载上的信号瞬间极性。电流从电源流出,经过旁路电容,通过放大器进入负载。然后,电流从负载接地端(或 PCB输出连接器的屏蔽)回到地平面,经过旁路电容,回到最初提供该电流的电源。- _& B6 I9 T. i
电流流过阻抗最小路径的概念是不正确的。电流在全部不同阻抗路径的多少与其电导率成比例。在一个地平面,常常有不止一个大比例地电流流经的低阻抗路径:一个路径直接连至旁路电容;另一个在达到旁路电容前,对输入电阻形成激励。图1示意了这两个路径。地回流电流才是真正引发问题的原因。
9 [) I. q2 E a" z" U6 g7 ^# r6 r' R: `& \8 [" V: l2 i
当旁路电容放在PCB的不同位置时,地电流通过不同路径流至各自的旁路电容,即“空间非线性”所代表的含义。若地电流某一极性的分量的很大部分流过输入电路的地,则只扰动信号的这一极性的分量电压。而若地电流的另一极性并没施扰,则输入信号电压以一种非线性方式发生变化。当一个极性分量发生改变而另一个极性没改动时,就会产生失真,并表现为输出信号的二次谐波失真。图2以夸张的形式显示这种失真效果。
8 Y/ j `$ q& n) L; {7 C8 F* A* L
' g9 {5 |1 i+ B& O; \& n% u4 T+ }0 e/ u) @( @" E4 k' I
当只有正弦波的一个极性分量受到扰动时,产生的波形就不再是正弦波。用一个100 Ω负载模拟理想放大器,使负载电流通过一个1 Ω电阻,仅在信号的一个极性上耦合输入地电压,则得到图3所示的结果。傅立叶变换显示,失真波形几乎全是-68dBc处的二次谐波。当频率很高时,很容易在PCB上生成这种程度的耦合,它无需借助太多PCB特殊的非线性效应,就可毁掉放大器优异的防失真特性。当单个运算放大器的输出由于地电流路径而失真时,通过重新安排旁路回路可调节地电流流动,并保持与输入器件的距离,如图4所示。 j+ V/ ]) q. ~7 d
# k8 {7 c- v+ g. F) Y
4 g9 u6 Q- m+ m
* b5 z" I; r0 _3 l6 m( d, J7 b
# V5 S& g& L% y w* o/ @
# v8 Q9 x0 s5 _1 r9 ~
3 P3 }) Q' o1 ~+ F, y. q& h多放大器芯片5 E. u9 R+ F4 F$ }' x7 [
多放大器芯片(两个、三个或者四个放大器)的问题更加复杂,因为它无法使旁路电容的地连接远离全部输入端。对四放大器来说更是如此。四放大器芯片的每一边都有输入端,所以没有空间放置可减轻对输入通道扰动的旁路电路。5 V/ t5 H. I& ^& g& T, I9 T. Q% X
图5给出了四放大器布局的简单方法。大多器件直接连至四放大器管脚。一个电源的地电流可扰动另一个通道电源的输入地电压和地电流,从而导致失真。例如,四放大器通道1 上的(+Vs)旁路电容可直接放在临近其输入的地方;而(-Vs)旁路电容可放在封装的另一侧。(+Vs)地电流可扰动通道1,而(-Vs)地电流则可能不会。
% q7 B5 x2 m; D8 o; T$ c! e9 D' b. O6 R W* V! Q! Z5 C/ |
& s. j1 O1 ]0 P- s7 c6 `: o, Q2 n; L% ]% @6 w7 N3 q
9 r& X7 I+ W4 H$ l6 _
为避免这种问题,可让地电流扰动输入,但让PCB电流以一种空间线性方式流动。为实现此目的,可以采用下方式在PCB上布局旁路电容:使(+Vs) 和(–Vs) 地电流流经同一路径。若正/负电流对输入信号的扰动相等,则将不会产生失真。因此,使两个旁路电容紧挨着排列,以使它们共享一个接地点。因为地电流的两个极性分量来自同一个点(输出连接器屏蔽或负载地),并都回流至同一个点(旁路电容的公共地连接),所以正/负电流都流经同一路径。若一个通道的输入电阻被 (+Vs)电流扰动,则(–Vs)电流对其有相同影响。因为无论极性是怎样的,产生的扰动都相同,所以不会产生失真,但将使该通道增益发生小的变化,如图 6所示。4 b2 n& J- f% c% V5 u
* @3 |6 q1 K% `( b. }" u
% T+ X5 R/ P& w( t9 E* E为验证如上推断,采用两个不同的PCB布局:简易布局(图5)和低失真布局(图6)。采用飞兆半导体的 FHP3450四运算放大器所产生的失真如表1所示,FHP3450的典型带宽是210MHz,斜率是1100V/us,输入偏置电流是100nA,每通道的工作电流是3.6mA。从表1可看出,失真越严重的通道,改进的效果越好,从而使4个通道在性能上接近相等。
) Z* \3 X8 S {7 M S6 M% u5 d9 {. Q7 n! S2 n! W1 Z% n
: k3 Z4 _1 T2 c0 F% n! }若在PCB 上没有一个理想的四放大器,则测量单一放大器通道的效应会很困难。显然,一个给定的放大器通道不仅扰动其本身输入,还会扰动其它通道的输入。地电流流经全部不同的通道输入,且产生不同效果,但又都受每个输出的影响,这种影响是可测量的。/ E, c1 M+ ^4 S
表2给出了当只驱动一个通道时,在其它未受驱动的通道上测量到的谐波。未驱动通道在基本频率上显示出一个小信号(串扰),但在没有任何显著基本信号的情况下,也产生由地电流直接引入的失真。图6 的低失真布局显示:因为几乎消除了地电流效应,二次谐波和总体谐波失真(THD)特性有很大改进。1 p$ r8 |! c$ k% r% b h9 ?
! i5 i3 ] l7 x% H/ d: @5 f
; c$ |4 `8 d3 S3 N7 J/ O
本文小结
4 A. _& k( R# p/ ~4 \) K简单地说,在PCB上,地回流电流流经不同的旁路电容(用于不同的电源)及电源本身,其大小与其电导率成比例。高频信号电流流回小旁路电容。低频电流(如音频信号的电流)可能主要流经更大的旁路电容。即使频率更低的电流也可能“漠视”全部旁路电容的存在,直接流回电源引线。具体的应用将决定哪个电流路径最关键。幸运的是,通过采用公共接地点及输出侧的地旁路电容,可以容易地保护全部地电流路径。
0 D8 P$ b4 d4 ?" u9 ]高频PCB布局的金科玉律是将高频旁路电容尽可能靠近封装的电源管脚,但比较图5和图6可以看出,为改进失真特性而修改该规则不会带来太大改变。改进失真特性是以增加约0.15英寸长的高频旁路电容走线为代价的,但这对FHP3450的AC响应性能影响很小。PCB布局对充分发挥一款高质量放大器的性能很重要,这里讨论的问题绝非仅限于高频放大器。类似音频等频率更低的信号对失真的要求要严格得多。地电流效应在低频下要小一些,但若要求相应改进所需的失真指标,地电流仍可能是一个重要的问题。
0 W9 K; p- D; i" m3 h2 ]- [
; [% _7 n3 x6 L* g/ P5 d% j |
|
hifi音响网
|
|
|