马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有帐号?快速注册
x
音响、录像的电源质量与接地问题(一)
8 j% }1 D5 Y' v3 n0 y. u
2 [2 o g$ x! J( a, X! y& K5 e使用全新的数字电器设备必须丢弃以前各种各样的接地、偶合、屏蔽方法。 ' z) b6 r0 @6 U& c) S
时代在变化,我们的电器产品也在变化,模拟电源、电子电路和电源功放领域正逐渐让位于数字转换和逻辑设计等新领域。灯光控制领域中,这一变化业已完成。尽管我们中已有不少人注意到了这一进步,但是,我们使用原来的模拟电子产品时,会伴随有AC电源连接,接地及影音系统连接等问题,当我们使用操作性能更稳定的全新数字电器产品时,与之相关的这些因素又有怎样的变化呢? 7 _( K5 X. y n5 y. J) _
首先我们来看,模拟电路元件是用来放大和组合新的电子信号的,所以模拟音频前级放大器和混频器就是用电势计来直接改变输入到电路元件上的信号电平。电势计有旋转型和滑动型两种,时间久了就会产生噪音。全新数字电路的控制类型相同,但有一点不同,即:他们可以改变集成电路的通信增益是根据电势计电阻从交流到直流转换过程产生的数字二进制值逐步改变的。噪音在转换过程中以被过滤掉。 ; h6 E* w' \- t" \2 V
有些用于混频和增益的控制器以不再使用电位器,现在从光学的磁性角度来说,他们都偶合了数字编码器,其旋钮的旋转或扳手的滑位直接转化数字脉冲,即二进制数码,然后我们就有了灯光控制系统、音视频混频器和类似电路产品,如通过数字连接的手提式或台式PC机系统,尽管性能更好的纤维光导连路越来越稳固,但平衡连路通常被受欢迎,如RS-232型或RS-422型,无线电系统也同时并存并同样使用控制和信号连路,只是仍用线材缠绕起来,以获取与连路的电器里的信号。这些电器的有线部分会使用数字型信号或其他专利信号。 & c+ `: v: T! z& B
一旦我们说起实际控制,即新型数字电器产品处理音、视频信号时,我们就发现,这些信号全都是数字式的,用震荡器再也看不到相位转换、幅度变化的交流电波形、直流电定位正弦、模拟波形信号。现在他们是一串串的方形波、脉冲宽度调协式(PWM)或代表全数字控制的若干已编码的二进制数字、音视频信号等。经常在PC机上使用音、视频光碟的人都熟悉这个,因为只有模拟信号才能与话筒或音箱相连。 ]& c$ m$ F0 C
即使研究一下交、直流电源,我们现在也只能找到两处使用直流电(输入过滤电容和逻辑或应用电压输出总接头);其他的电路都控制一、两种方形波。一万赫以内的频率和PWN电路在电源内布进行会合。相反,模拟电路电源在发电过程中只有50Hz~60Hz的交流电输入到整流器上,其他地方或者可能发现脉动120Hz直流电或一些"纯"电平的直流电。旧式线性电源(模拟或线性设计)的结构原理;新式开关型电源(SMPS),两者区别很大。 2 ]; ]3 U4 P( W! G- j
电源功放可能是数字改革后仅剩的一种应用。一般而言,其输出最终会反馈到模拟传感器(也叫扬声器)上,而模拟信号出现于功放中则又是另一回事。在功率放大器上,数字电路在各方面都超出了最后输出点,甚至使用数字电源放大电路和特殊过滤来消除高频元件(如载波器)。然后用过滤器帮助冲建视频波段信号作好模拟电压和电流。 ! a% }% ^- p, g1 s ]* I
在模拟电器领域中,我们尤其喜欢颇有口碑的单点接地(SPG)系统和静地面接地电极,通常具有1的神秘特性,只需连接到电器上。这一应用一直保留着250个产品中有一个NEC损坏--接地。从此前提发出的所有地面接地都要求防火、防震、防电,通过使用屏蔽接地避雷针可以解决这个问题,从电子学上讲与其他的电极一样。建筑电子系统的(安全)电器接地导体(EGC)系统,包括金属电缆管道、金属电器箱体和电源线上著名的绿线。 " m; T1 o0 `2 k/ ~1 r$ S
现在的情况完全变了,因为现代的模拟及数字电器中使用的建议接地设计,接受交流电源系统的电源接地绿线法连接,忽略了所有型号的特殊连接。例如:我们在房间里架好了电器,这些电器都用信号电平缆线接好了,并使用信号参考支架(SRG)以保证具有带宽接地功能,而普通型号的噪音在相互连接的单元中以被衰减。下面还将讲述许多关于SRG的内容。 3 A! a) \, y, @: i. A, q
全新数字电器明显与众不同,且一点不受模拟电器困扰我们的问题所影响。但我们中已有人发现了与数字电器有关的新问题亟待解决。我们现在应该去注意新出现的重要规则,尤其是针对全新数字电器的,这些一般也用于模拟电器,例如:有些电器接地规则以做了重要修正。我们还将看到,有一些具有影响力的缆线屏蔽规则,除非是视而不见,否则闪电和电子保护要求都已出现,就是不被理解,比我们使用的电子承载电器更重要,尤其是对数字电器。
8 z$ n, a9 H* ]有了这些了解之后,让我们开始探索数字视听器材这一新领域,及其与建议交流电源、接地和视听缆线系统的关系。 , q2 m7 ~+ }8 T! @8 X( ?: j+ [' P# _5 [
电源质量与性能问题
0 L: _2 U, h- Z) }% o# E在应用上,计算机系统显示数值(1或0)的逻辑电路和视听电器的数字电路几乎没有差别,因此,在计算机领域成功开发的众多信息直接适用于压缩机运做的电器中。(别忘了这是以计算机电器为出发点)。当我们研究CBEMA曲线时,这一点就可以得到证明。
! L$ q/ ]8 U7 z$ LCBEMA代表旧式框架形计算机生产商协会。该曲线是由CBEMA的功率界面协会为第三号(SC-3)开发的,可用来确定交流电源质量和各种数字逻辑电器之间的关系。
. z. V; R3 f- _, m3 B% O {/ OX轴表示时间及标准美国60Hz电源线频率每秒钟运行的圈数。Y轴表示电压的+/-参数。Y轴上的参数百分之百等于所选额定rms交流电电压。例如:120伏交流电在百分之百那一行;当电压上升时,曲线会沿Y轴上升(标注两倍、三倍等交流电额定电压的增量,直至百分之百)。1 C* `5 [8 p1 i. k+ p
当缆线电压下降时,曲线会顺着Y轴降至0点,整个电源消失。对数的X轴决定了被跟踪情况的持续性,例如:如果交流电源轴线降至0度,电压达一分钟时;然后数字心又恢复成百分之百曲线。当然,这可以推断:电压可恢复到120V交流电,即百分之百曲线。若不能恢复,曲线需要恢复到他最后的电平状态。
, z5 j6 j# B& ?/ m+ G瞬间低压或倾斜现象 9 U- U# T5 i. _# C* T& i5 s3 g% F
最常出现的电源质量问题之一叫倾斜。倾斜情况有好几种不同的说法,如下降、俯冲等,但根据IEEE的《绿宝手册》规定"倾斜"一词以广为接受。其额定电压存在于倾斜发生之前或之后,因为倾斜会导致有效电压明显地下降一圈或好几圈。 % @ X, U$ I9 l% J+ f0 k, ]
常见的情况是由突然应用有较高的瞬间开始或流入电流的系统或承载电路引起的。这种常见的承载由整块面板、马达、大常见整流器及交直流电源表示,其中交、直流电源有个大值输入电容器,通过整流器直接插过曲线。用一个大而空的电容器,大型充电电流能够因此而存在于第一个半圈,但在随后的半圈里会逐渐减少,直到电容器再充上电压。 ; j3 z9 ]: P" m3 {+ x ~- x
瞬间高压或膨胀现象 8 l/ z8 V3 f( _( z2 R
如所期望的一样,膨胀是与倾斜相反的情况。膨胀也被称为涌压,但这个词不太正确,因为"涌"更适合用于持续更短的情况,包括瞬间高压,如闪电产生的电压。膨胀这个术语现在也被IEEE正式收录,表示上述发生的情况对膨胀正确的认识,其中额定电压存在于膨胀发生之前或之后,会导致明显地有效电压上升一圈或好几圈。
; [7 q) Y; I& w, `9 m% t6 T! X1 {常见的膨胀情况常常是由取消电子系统或有较高流动电流8t大型承载电路而引起的。这种承载是由面板、马达、整流器和大型的'不与一个电源关闭控制同时相连的交、直流电源所表示的。 - _8 g; }- S* I. ?& a
脉冲电压现象
' F- }4 @8 {6 P% m/ ?常见的脉冲现象有许多名字,如假信号、尖峰信号、刻痕、螺状触须、过渡脉冲等。其特点是极性辅助循环,或是频段辅助循环。正是这唯一特性但却会使脉冲成群出现,也许与某个原因有关,也许与之没有关。脉冲与交流电曲线的电压或电流要么同步,要么异步。
6 j) g X: j' x& t T7 a脉冲将在C8EMA曲线中出现在左边8.33毫秒处,和辅助循环区,脉冲会全部保留在10004曲线之上或之下,也会部分保留在该曲线之上或之下。这也许有衰减的震荡特性。快速过渡时间与脉3中紧密相连,但其衔接除了AG电源系统基本频率的变化比例之外一点也不明显。
0 @& ^) S) x) G" t+ {5 a! s% D8 H总而言之、脉冲总是有个过渡时间,在AC电路上用毫秒或微秒表示。当脉冲源十分接近测量点时,过渡时间会加快,这是因为AC电路在高频时间是有损耗的发射曲线,倾向于随着距离的增加而衰减HF信号。
) v- Z+ v4 V9 W8 a* [% O震荡电压衰变现象
$ N- B0 o3 \- p |) T脉冲衰变可能会与衰减震荡电流或电压波形有关,依靠它最初是怎样启动的,多是怎样通过干涉AC电源系统接线发射出去的。注意:所涉及的AC电源系统包括有电抗,而且就是LC电路,在基础频率或和谐的相关频率时甚至会产生共振。因此,震荡现象在这个电路上很常见。+ C$ @; y4 F( k; p
这些震荡分频度根据LC电路上涉及的有线系统的Q值的不同或其它损失的不同而不同。一般情况下,只有少数的甚高频脉冲衰减重覆能被看到,因为它在AG电源电路的指数式中很快会被分频掉。超低频衰减震荡分频时会延续稍长点,通过更长的有线路径可以传播出去。 % k |' o) m6 m V
AC电源线上常驻见的衰减震荡现象可在CBEMA曲线上8.33毫秒左边及在辅助循环干扰区内可以看到。但有时候,也并非如此,8.33毫秒线会与震荡波形的波形的尾部相交。震荡一般运动在100%电压线之上或之下,但有时候会出现DC偏极现象,并徘徊在该线上下。* ]* w# o! A$ I3 t' ?; ]
有一个好例子,即:AC电源系统衰减震荡现象是由一排排电源因素电容器打开到"进口"(有时为"出口")而产生的。这些现象职有能量,又包含有许多低频内容。这些因素结合起来会使干扰引出去,而在电子补给系统进入设备及电器之前过好几英里英里的距离之后没有大幅衰减。装有开关的 0 G9 I8 d% o+ O( j+ K
一串电源因素电容器的常见电路简图。这里的一般规则是:电容器bank离所影的子设备越近,潜在干就会越大,反之亦然。
& w$ P% @! q! Z/ n* r& [: Z多数电源校正电容器banks安装在三相干扰电路上,用于电子补给系统本身,在设备的主进给装置系统内,或两个位置都有。两种情况下,不需要的效果极易达到建筑的辅助进给装置及分支电路系统中,并到达连接的电子承载设备。
- t; Z2 m4 x' ~1 \+ P电容器怎样引起衰减震荡现象?当一套放电电容器直接在高峰由压附近连在AC线上时就会引起部分问题。另一种方式,充电电容器可在曲线电压大大低于电容器电压时连接到AC线上即可产生。
k' b, C5 I/ j/ ^7 H& t在第一种情况下,电容器从AC线上获得许多电流。由于上流电源电路阻抗之缘故,电容器会令电压产生暂时突降现象,通过顺流载荷看上去象是无准备的电压下降01E第二种下,电容器给AC线加了压。这个加压会在线路导体上引起不需要的电压从电容地连接点瞬时双向突增。
# z1 f" E" ]8 m+ U. w尽管这个上升看上去像是双向瞬时突增,但它的实际增向是荷载向。当用于连接三个电容器bank的机械联系没有同步联系次数时,又会产生另一问题,即导前致两个电容器先被连接上,直接结果是在两个相关的电源系统导体上产生特殊干扰。伴随这一干扰的还有普通干扰。 $ ^3 ]+ R' g4 [+ d0 N9 ]
这两种情况的任意一种,包括电容器和AC线的LG产品都会产生震荡条件直到电容器的充电变得与线路电压频率同步。作为与线路相连的简单电抗载荷,由于阻抗的缘故,电容器产生有倾向性的电源因素校正影响。
" P2 F4 H; |' Q6 R4 N通讯障碍 |
|
|
|
|