爱上莫扎特
发表于 2004-12-17 04:00:00
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有帐号?快速注册
x
1、数字信号处理器(DSP)是一种适合于实现各种数字信号处理运算的微处理器,具有下列主要结构特点:(1)采用改进型哈佛(Harvard)结构,具有独立的程序总线和数据总线,可同时访问指令和数据空间,允许实际在程序存储器和数据存储器之间进行传输;(2)支持流水线处理,处理器对每条指令的操作分为取指、译码、执行等几个阶段,在某一时刻同时对若干条指令进行不同阶段的处理;(3)片内含有专门的硬件乘法器,使乘法可以在单周期内完成;(4)特殊的指令结构和寻址方式,满足数字信号处理FFT、卷积等运算要求;(5)快速的指令周期,能够在每秒钟内处理数以千万次乃至数亿次定点或浮点运算;(6)大多设置了单独的DMA总线及其控制器,可以在基本不影响数字信号处理速度的情况下进行高速的并行数据传送。
! f% I' Q8 c! H- i. |: m8 j; Q0 Z2 e& D# h& c- _% A
由一片DSP加上存储器、模/数转换单元和外设接口就可以构成一个完整的控制系统,但这种方案要达到高速实时控制是不可行的。因为一个实时控制系统一般需要完成数据采集、模/数转换、分析计算、数/模转换、实时过程控制以及显示等任务,单靠一片DSP来完成这些工作势必会大大延长系统对控制对象的控制周期,从而影响整个系统的性能。所以我们添加一个CPU,负责数据采集、模/数转换、过程控制以及人机接口等任务,使DSP专注于系统控制算法的实现,充分利用它的高速数据处理能力。从性能价格比的角度出发,这个CPU采用8位的51系列单片机。这时,两个CPU之间的数据共享就成了一个重要的问题。1 n+ H8 O( e: {" ^8 Q
$ F) i2 d& l4 [/ P方案一、; E5 }: Q O( S3 H3 c1 n" D. g! U
下面讨论一下89C52对双口RAM的读写过程。当89C52对双口RAM进行读数据时,由图3可知此时A0应为低电平,不妨假设地址为0x1000h,则存储在双口RAM中该地址处的16位数据同时被读出,由于高8位数据线与89C52的8位数据线直接相连,所以高8位数据被立即读入89C52中。同时,根据图3中各信号的相互逻辑关系不难判断,U3的使能信号LE有效(高电平),OE无效(低电平),因而低8位数据被送入U3 中锁存起来。接着89C52再进行一次读操作,这时地址变为0x1001h,由于A0变成高电平,双口RAM的读使能信号变成无效电平,所以此次读操作对双口RAM不产生影响。再来看U3的使能信号LE和OE的变化情况,显然LE变成了无效电平,而OE变成了有效电平,上次被锁存的数据(即双口RAM的低8位数据)被送入89C52。当89C52对双口RAM进行写入操作时,注意此时A0应为高电平,不妨假设地址为0x100Ch,同样可根据图3判断U2的使能信号LE和OE均为有效电平,因而数据被同时写入双口RAM中(即此时双口RAM的高8位数据和低8位相同);接着89C52再进行一次写操作,此时地址变为0x100Dh,由于A0变成低电平,U2的片选为无效电平,U2被封锁,数据写入双口RAM的高8位。从上面的分析可知,利用最低地址位A0的不同电平,89C52通过两次连续的读或写操作,成功地实现了对双口RAM中数据的读或写,只不过是读入时是先读入高8位,后读入低8位;而写入则是先写入低8位,后写入高8位。
' m2 L' K8 M1 [ i/ F
) P4 \1 b0 q8 r9 [% n6 G4 软件实现方案( w6 l- Y1 |- s ^( V& m
双口RAM必须采用一定的机制来协调左右两边CPU对它的读写操作,否则会出现读写数据的错误。通常可以用中断、硬件、令牌和软件这四种方式来协调双方,本文采用的是软件方式。从上面的分析中我们可以得知,在接口电路中实际上已经利用89C52的最低地址位A0把双口RAM的存储空间分为奇、偶地址两个空间。其中,奇地址空间专供89C52写,偶地址空间专供89C52读。那么我们只需对TMS320C32的软件作相应处理即可,也就是说,TMS320C32对双口RAM的奇地址空间只读,对偶地址空间只写。这样就避免了TMS320C32和89C52对双口RAM同一地址单元的写入操作。另外,在对双口RAM进行访问之前,CPU首先对本端的BUSY信号进行查询,只有本端/BUSY信号无效时才进行读写操作,进一步保证了数据读写的可靠性。 |
|
|
|
|